
Graph Neural Networks for
Recommendations

1

Data Science and Engineering Lab

Tutorial website: https://advanced-recommender-systems.github.io/ijcai2021-tutorial/

Wenqi Fan
The Hong Kong Polytechnic University

https://wenqifan03.github.io, wenqifan@polyu.edu.hk

https://advanced-recommender-systems.github.io/ijcai2021-tutorial/
https://wenqifan03.github.io/

2

A General Paradigm

1 0 1 1

0 1 0 0

1 1 0 0

1 0 0 1

0/1 Interaction matrix

users

items ItemsUsers
𝑢! 𝑣!

𝑢! 𝑣"

𝑢! 𝑣#

𝑢" 𝑣!
… …

Data instance
(𝑢$, 𝑣%) and side

information

Learning and Reasoning on Graph for Recommendation, WSDM 2020

3

A General Paradigm
ItemsUsers

𝑢! 𝑣!1 0 1 1

0 1 0 0

1 1 0 0

1 0 0 1

0/1 Interaction matrix

users

items

𝑢! 𝑣"

𝑢! 𝑣#

𝑢" 𝑣!
… …

Data instance
(𝑢$, 𝑣%) and side

information

Representation
Learning

Interaction
Modeling!𝑦!"

User

Item
Other Features

Learning and Reasoning on Graph for Recommendation, WSDM 2020

4

A General Paradigm
ItemsUsers

𝑢! 𝑣!

𝑢! 𝑣"

𝑢! 𝑣#

𝑢" 𝑣!
… …

Data instance
(𝑢$, 𝑣%) and side

information

Representation
Learning

Interaction
Modeling !𝑦!"

User
Item
Other Features

Information Isolated Island Issue
ignore implicit/explicit relationships among instances (High-order Connectivity)

Learning and Reasoning on Graph for Recommendation, WSDM 2020

5

A General Paradigm

𝑢! 𝑣!

𝑢! 𝑣"

𝑢! 𝑣#

𝑢! 𝑣!

𝑢" 𝑣!
… …

… … 𝑢!𝑣! Behavior similarity
among users/items

ItemsUsers
𝑢! 𝑣!

𝑢! 𝑣"

𝑢! 𝑣#

𝑢" 𝑣!
… …

Data instance
(𝑢$, 𝑣%) and side

information

Representation
Learning

Interaction
Modeling !𝑦!"

User
Item
Other Features

Information Isolated Island Issue
ignore implicit/explicit relationships among instances (High-order Connectivity)

Learning and Reasoning on Graph for Recommendation, WSDM 2020

6

Data as Graphs

The world is more closely connected than you might think!

Most of the data in RS has essentially a graph structure
- E-commerce, Content Sharing, Social Networking ...

7

Data as Graphs

The world is more closely connected than you might think!

Most of the data in RS has essentially a graph structure
- E-commerce, Content Sharing, Social Networking ...

Items

Users

User-Item Interactions
(purchase, click, add-to-cart, etc.)

user-item graph

8

Data as Graphs

The world is more closely connected than you might think!

Most of the data in RS has essentially a graph structure
- E-commerce, Content Sharing, Social Networking ...

Items

Users

User-user Connections
(social networks)

User-Item Interactions
(purchase, click, add-to-cart, etc.)

user-item graph

user-user social graph

9

Data as Graphs

The world is more closely connected than you might think!

Most of the data in RS has essentially a graph structure
- E-commerce, Content Sharing, Social Networking ...

Items

Users

Attributes

User-user Connections
(social networks)

User-Item Interactions
(purchase, click, add-to-cart, etc.)

Item-item Connections
(substitutes/complements; external knowledge)

user-item graph

user-user social graph

item graph

10

How to solve such issue?

Items

Users

Attributes

ItemsUsers
𝑢! 𝑣!

𝑢! 𝑣"

𝑢! 𝑣#

𝑢" 𝑣!
… …

Data instance
(𝑢$, 𝑣%) and side

information

Representation
Learning

Interaction
Modeling !𝑦!"

User
Item

Explore & Exploit Relations among Instances

Information Isolated
Island Issue Other Features

Graph-structured data

11

How to solve such issue?
ItemsUsers

𝑢! 𝑣!

𝑢! 𝑣"

𝑢! 𝑣#

𝑢" 𝑣!
… …

Data instance
(𝑢$, 𝑣%) and side

information

Representation
Learning

Interaction
Modeling !𝑦!"

User
Item

Explore & Exploit Relations among Instances

Graph Neural Networks
(GNNs) Items

Users

Attributes

Information Isolated
Island Issue Other Features

Graph-structured data

12

Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
local neighborhoods.

Node

Node feature
Neural Message Passing

/Information Propagation

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

13

Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
local neighborhoods.

Node

Node feature

1. Model a local structural information
(neighborhood) of a node;

Neural Message Passing
/Information Propagation

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

14

Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
local neighborhoods.

Node

Node feature

1. Model a local structural information
(neighborhood) of a node;
2. Aggregation operation;
3. Representation update.

GNNs can naturally integrate node feature and
the topological structure for graph-structured
data.

Neural Message Passing
/Information Propagation

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

15

Graph Neural Networks (GNNs)
Basic approach: Average neighbor messages and apply a neural network.

𝐡#$ = 𝐱#

k-th layer embedding of node 𝒗

Initial 0-th layer embeddings are equal to node 𝒗’s features

Embedding after k layers of neighborhood aggregation.

Semi-supervised Classification with Graph Convolutional Network, ICLR, 2017.

𝐳# = 𝐡#%

𝐡#% = 𝜎 𝐖&
% '
'∈) #

𝐡'%*&

|𝑁 𝑢 |
+𝐖+

%𝐡#%*&

16

Graph Neural Networks (GNNs)
Basic approach: Average neighbor messages and apply a neural network.

𝐡#$ = 𝐱#

Average of neighbor’s previous layer embeddings
k-th layer embedding of node 𝒗

Non-linearity (e.g., ReLU or tanh)

Initial 0-th layer embeddings are equal to node 𝒗’s features

trainable matrices (i.e., what we learn)

Embedding after k layers of neighborhood aggregation.

Previous layer embedding of node 𝑣

Semi-supervised Classification with Graph Convolutional Network, ICLR, 2017.

𝐳# = 𝐡#%

𝐡#% = 𝜎 𝐖&
% '
'∈) #

𝐡'%*&

|𝑁 𝑢 |
+𝐖+

%𝐡#%*&

17

Graph Neural Network (GNN)

Ø GraphSAGE:

Ø GAT:

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.
Graph Attention Networks, ICLR, 2018

Ø Simple neighborhood aggregation:

𝐡#% = 𝜎 𝐖&
% '
'∈) #

𝐡'%*&

|𝑁 𝑢 |
+𝐖+

%𝐡#%*&

18

Graph Neural Network (GNN)

Ø GraphSAGE:

Ø GAT:

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.
Graph Attention Networks, ICLR, 2018

Ø Simple neighborhood aggregation:

𝐡#% = 𝜎 [𝐖&
% - AGG 𝐡'%*&, ∀'∈ 𝑁 𝑢 ,𝐖+

% - 𝐡#%]

𝐡#% = 𝜎 𝐖&
% '
'∈) #

𝐡'%*&

|𝑁 𝑢 |
+𝐖+

%𝐡#%*&

Generalized Aggregation: mean, pooling, LSTM

19

Graph Neural Network (GNN)

Ø GraphSAGE:

Ø GAT:

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.
Graph Attention Networks, ICLR, 2018

Ø Simple neighborhood aggregation:

𝐡#% = 𝜎 [𝐖&
% - AGG 𝐡'%*&, ∀'∈ 𝑁 𝑢 ,𝐖+

% - 𝐡#%]

Generalized Aggregation: mean, pooling, LSTM

𝐡#% = 𝜎 '
'∈) #

𝛼#,'𝐖% 𝐡'%*&

Learned attention weights

𝐡#% = 𝜎 𝐖&
% '
'∈) #

𝐡'%*&

|𝑁 𝑢 |
+𝐖+

%𝐡#%*&

Book: Deep Learning on Graphs

20

1.	Introduction

2.	Foundations	of	Graphs
Part	One:	Foundations

3.	Foundations	of	Deep	Learning

4.	Graph	Embedding
Part	Two:	Methods

5.	Graph	Neural	Networks

6.	Robust	Graph	Neural	Networks

7.	Scalable	Graph	Neural	Networks

8.	Graph	Neural	Networks	for	Complex	Graphs

9.	Beyond	GNNs:	More	Deep	Models	for	Graphs

10.	Graph	Neural	Networks	in	Natural	Language	Processing
Part	Three:	Applications

11.	Graph	Neural	Networks	in	Computer	Vision

12.	Graph	Neural	Networks	in	Data	Mining	

13.	Graph	Neural	Networks	in	Bio-Chemistry	and	Healthcare

14.	Advanced	Methods	in	Graph	Neural	Networks
Part	Four:	Advances

15.	Advanced	Applications	in	Graph	Neural	Networks

https://cse.msu.edu/~mayao4/dlg_book/

Authors
English Version: Yao Ma and Jiliang Tang
Chinese Version: Yiqi Wang, Wei Jin, Yao Ma and Jiliang Tang

https://cse.msu.edu/~mayao4/dlg_book/
http://cse.msu.edu/~mayao4/
https://www.cse.msu.edu/~tangjili/
https://www.cse.msu.edu/~wangy206/
http://www.cse.msu.edu/~jinwei2/
http://cse.msu.edu/~mayao4/
https://www.cse.msu.edu/~tangjili/

21

GNNs based Recommendation
Collaborative Filtering
• Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)
• Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day)
• Neural Graph Collaborative Filtering (SIGIR’19)
• LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)
• Graph Trend Networks for Recommendations, arXiv:2108.05552, 2021

Collaborative Filtering with Side Information (Users/Items)
p Social Recommendation (Users)

• Graph Neural Network for Social Recommendation (WWW’19)
• A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
• A Graph Neural Network Framework for Social Recommendations (TKDE’20)

p Knowledge-graph-aware Recommendation (Items)
• Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness

Regularization (KDD’19 and WWW’19)
• KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)

22

GNNs based Recommendation
Collaborative Filtering
• Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)
• Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day)
• Neural Graph Collaborative Filtering (SIGIR’19)
• LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)
• Graph Trend Networks for Recommendations, arXiv:2108.05552, 2021

Collaborative Filtering with Side Information (Users/Items)
p Social Recommendation (Users)

• Graph Neural Network for Social Recommendation (WWW’19)
• A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
• A Graph Neural Network Framework for Social Recommendations (TKDE’20)

p Knowledge-graph-aware Recommendation (Items)
• Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness

Regularization (KDD’19 and WWW’19)
• KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)

23

Interactions as Bipartite Graph

1 0 1 1

0 1 0 0

1 1 0 0

1 0 0 1

0/1 Interaction matrix

users

items

users items

Bipartite Graph

24

Interactions as Bipartite Graph

5 0 3 1

0 3 0 0

2 5 0 0

5 0 0 4

Weighted interaction matrix

users

items

users items

Bipartite Graph

5

3

1

3

2
5

5

4

25

GCMC

users items

Bipartite Graph

5

3

1

3

2
5

5

4

User representation learning

µi,r =
X

j2Ni,r

1

cij
Wrxj

<latexit sha1_base64="qyqEhce/0XF3O+CouA+H0OwmjO0=">AAACNnicbVDLSgMxFM34rPVVdekmWAQXUmakoBuh6MaNomCt0ClDJs20aZPMkGTEEvJVbvwOd924UMStn2CmduHrQOBwzr3cnBNnjCrt+2NvZnZufmGxtFReXlldW69sbN6oNJeYNHHKUnkbI0UYFaSpqWbkNpME8ZiRVjw8LfzWHZGKpuJajzLS4agnaEIx0k6KKuchzyND96G0x6HKecgop1pFZhBSAUOOdB8jZi5sMSSthWEiETaBNdgpcOCUVmSkhfduxUaVql/zJ4B/STAlVTDFZVR5CrspzjkRGjOkVDvwM90xSGqKGbHlMFckQ3iIeqTtqECcqI6ZxLZw1yldmKTSPaHhRP2+YRBXasRjN1nkUL+9QvzPa+c6OeoYKrJcE4G/DiU5gzqFRYewSyXBmo0cQVhS91eI+8j1ol3TZVdC8DvyX3JzUAvqtfpVvdo4mdZRAttgB+yBAByCBjgDl6AJMHgAY/ACXr1H79l7896/Rme86c4W+AHv4xOvVq25</latexit>

Aggregate for each rating:

Graph Convolutional Matrix Completion. 2017.

26

GCMC

users items

Bipartite Graph

5

3

1

3

2
5

5

4

User representation learning

µi,r =
X

j2Ni,r

1

cij
Wrxj

<latexit sha1_base64="qyqEhce/0XF3O+CouA+H0OwmjO0=">AAACNnicbVDLSgMxFM34rPVVdekmWAQXUmakoBuh6MaNomCt0ClDJs20aZPMkGTEEvJVbvwOd924UMStn2CmduHrQOBwzr3cnBNnjCrt+2NvZnZufmGxtFReXlldW69sbN6oNJeYNHHKUnkbI0UYFaSpqWbkNpME8ZiRVjw8LfzWHZGKpuJajzLS4agnaEIx0k6KKuchzyND96G0x6HKecgop1pFZhBSAUOOdB8jZi5sMSSthWEiETaBNdgpcOCUVmSkhfduxUaVql/zJ4B/STAlVTDFZVR5CrspzjkRGjOkVDvwM90xSGqKGbHlMFckQ3iIeqTtqECcqI6ZxLZw1yldmKTSPaHhRP2+YRBXasRjN1nkUL+9QvzPa+c6OeoYKrJcE4G/DiU5gzqFRYewSyXBmo0cQVhS91eI+8j1ol3TZVdC8DvyX3JzUAvqtfpVvdo4mdZRAttgB+yBAByCBjgDl6AJMHgAY/ACXr1H79l7896/Rme86c4W+AHv4xOvVq25</latexit>

Aggregate for each rating:

ui = W · �(accum(ui,1, . . . , ui,R))

<latexit sha1_base64="hidLroJdG3WN6IbTLLF6uEveJcw=">AAACIXicbVBNS8MwGE7n15xfVY9egkPYYIxWBu4iDL14nOI+YB0lzdItLE1Lkgqj9K948a948aDIbuKfMet60M0HAk+e533f5H28iFGpLOvLKGxsbm3vFHdLe/sHh0fm8UlXhrHApINDFoq+hyRhlJOOooqRfiQICjxGet70duH3noiQNOSPahaRYYDGnPoUI6Ul12zGLoXXMHE8H/ZSB49C5Ug6DlAFYRwHldhNaM1Oa9DRjqzB7P6QVquuWbbqVga4TuyclEGOtmvO9Qg9knCFGZJyYFuRGiZIKIoZSUtOLEmE8BSNyUBTjgIih0m2YQovtDKCfij04Qpm6u+OBAVSzgJPVwZITeSqtxD/8wax8pvDhPIoVoTj5UN+zKAK4SIuOKKCYMVmmiAsqP4rxBMkEFY61JIOwV5deZ10L+t2o964b5RbN3kcRXAGzkEF2OAKtMAdaIMOwOAZvIJ38GG8GG/GpzFflhaMvOcU/IHx/QMkUKJA</latexit>

Item representation learning in a similar way

Graph Convolutional Matrix Completion. 2017.

27

NGCF

Embedding Propagation, inspired by GNNs
• Propagate embeddings recursively on the user-item graph
• Construct information flows in the embedding space

Neural Graph Collaborative Filtering. SIGIR 2019.

User-item
Graph

High-order Connectivity for 𝑢1

28

NGCF

Embedding Propagation, inspired by GNNs
• Propagate embeddings recursively on the user-item graph
• Construct information flows in the embedding space

Neural Graph Collaborative Filtering. SIGIR 2019.

User-item
Graph

collaborative signal: message passed
from interacted items to 𝑢

Self-connections

High-order Connectivity for 𝑢1

29

NGCF

Embedding Propagation, inspired by GNNs
• Propagate embeddings recursively on the user-item graph
• Construct information flows in the embedding space

Neural Graph Collaborative Filtering. SIGIR 2019.

User-item
Graph

Different layers

collaborative signal: message passed
from interacted items to 𝑢

Self-connections

High-order Connectivity for 𝑢1

30

LightGCN
Simplifying GCN for recommendation

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020.

discard feature transformation and nonlinear activation

31

LightGCN
Simplifying GCN for recommendation

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020.

discard feature transformation and nonlinear activation

§ Unreliable user-item interactions

Graph Trend Networks for Recommendations

33
Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

Macbook Pro Camera LipstickRingHandbagiPhone

User 1 User 2 User 3 User 4

E.g.,
(1) User 3 was affected by the click-bait issue.
(2) User 2 bought a one-time item for his mother’s birthday
present;

Embedding Propagation Rule

Overlook unreliable interactions (e.g.,
random/bait clicks) and uniformly treat all
the interactions

§ Performance of LightGCN under different perturbation rates.

Preliminary study

34
Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

§ Performance of LightGCN under different perturbation rates.

Preliminary study

35
Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

Ø To build a more reliable and
robust recommender system

Ø Graph Trend Networks for
recommendations (GTN)

§ Laplacian smoothing problem

Graph Trend Networks for Recommendations

36
Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.
A unified view on graph neural networks as graph signal denoising, arXiv:2010.01777, 2020.

Matrix form:

edge-wise form

§ Design Motivation from Graph Trend Filtering
§ Embedding smoothness objective:

Graph Trend Networks for Recommendations

37

Preserve the proximity Impose embedding smoothness

Trend filtering on graphs, Journal of Machine Learning Research, 2016.
Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

GTN

38Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

Recommendation performance
under different perturbation rates.

39

GNN based Recommendation
Collaborative Filtering
• Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)
• Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day)
• Neural Graph Collaborative Filtering (SIGIR’19)
• LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)

Collaborative Filtering with Side Information (Users/Items)
p Social Recommendation (Users)

• Graph Neural Network for Social Recommendation (WWW’19)
• A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
• A Graph Neural Network Framework for Social Recommendations (TKDE’20)

p Knowledge-graph-aware Recommendation (Items)
• Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness

Regularization (KDD’19 and WWW’19)
• KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)

40

Social Recommendation
Side information about users: social networks

p Users’ preferences are similar to or influenced by the people around them (nearer neighbours)
[Tang et. al, 2013]

Social recommendation: a review, SNAM, 2013

41

Social Recommendation
Side information about users: social networks

p Users’ preferences are similar to or influenced by the people around them (nearer neighbours)
[Tang et. al, 2013]

Social recommendation: a review, SNAM, 2013

42

GraphRec
Graph Data in Social Recommendation

Graph Neural Networks for Social Recommendation. WWW 2019.

User-Item Graph Social Graph

43

GraphRec
Graph Data in Social Recommendation

Graph Neural Networks for Social Recommendation. WWW 2019.

User-Item
Graph

Social Graph

User-Item Graph Social Graph

Users
Bridge

44

GraphRec
Three Components:

p User Modeling
p Item Modeling
p Rating Prediction

Graph Neural Networks for Social Recommendation. WWW 2019.

45

GraphRec

Item Aggregation
(User-Item Graph)

Social Aggregation
(Social Graph)

Three Components:
p User Modeling
p Item Modeling
p Rating Prediction

Graph Neural Networks for Social Recommendation. WWW 2019.

GraphRec: User Modeling

46

p Social Aggregation in user-user social graph

p Users are likely to share more similar tastes with strong
ties than weak ties.

Strong tieWeak tie

Graph Neural Networks for Social Recommendation. WWW 2019.

GraphRec: User Modeling

47

p Social Aggregation in user-user social graph

p Users are likely to share more similar tastes with strong
ties than weak ties.

Strong tieWeak tie

Aggregating item-space users messages from
social neighbors

Graph Neural Networks for Social Recommendation. WWW 2019.

Attention network to differentiate the importance weight.

attentive weight

Social-space
user latent factor

Item representationItem-space
user latent factor

User-item
Graph

Social Graph

48

User Modeling: Social Aggregation

user item

Graph Neural Networks for Social Recommendation. WWW 2019.

Social-space
user latent factor

Item representation

Item Aggregation

Item-space
user latent factor

User-item
Graph

Social Graph

49

User Modeling: Social Aggregation

user item

Graph Neural Networks for Social Recommendation. WWW 2019.

Social-space
user latent factor

Item representation

Item Aggregation

Item-space
user latent factor

Social Aggregation

User-item
Graph

Social Graph

50

User Modeling: Social Aggregation

user item

Graph Neural Networks for Social Recommendation. WWW 2019.

51

GNNs based Recommendation
Collaborative Filtering
• Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)
• Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day)
• Neural Graph Collaborative Filtering (SIGIR’19)
• LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)

Collaborative Filtering with Side Information (Users/Items)
p Social Recommendation (Users)

• Graph Neural Network for Social Recommendation (WWW’19)
• A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
• A Graph Neural Network Framework for Social Recommendations (TKDE’20)

p Knowledge-graph-aware Recommendation (Items)
• Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness

Regularization (KDD’19 and WWW’19)
• KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)

KGCN (WWW’19)

Heterogeneous Graph:
Ø Nodes: entities (Items)
Ø Edges: relations

Side information about items: Knowledge Graph (KG)

Triples: (head, relation, tail)

Knowledge Graph Convolutional Networks for Recommender Systems, WWW 2019. 52

KGCN (WWW’19)

Heterogeneous Graph:
Ø Nodes: entities (Items)
Ø Edges: relations

Side information about items: Knowledge Graph (KG)

Triples: (head, relation, tail)

Forrest Gump
(items) Robert Zemeckis

film.film.director

Knowledge Graph Convolutional Networks for Recommender Systems, WWW 2019. 53

KGCN (WWW’19)

3.2 KGCN Layer
KGCN is proposed to capture high-order structural proximity among
entities in a knowledge graph.We start by describing a single KGCN
layer in this subsection. Consider a candidate pair of user u and
item (entity) � . We use N (�) to denote the set of entities directly
connected to � ,2 and rei ,ej to denote the relation between entity ei
and ej . We also use a function � : Rd ⇥Rd ! R (e.g., inner product)
to compute the score between a user and a relation:

�
u
r = �(u, r), (1)

where u 2 Rd and r 2 Rd are the representations of user u and
relation r , respectively, d is the dimension of representations. In
general, �ur characterizes the importance of relation r to user u. For
example, a user may have more potential interests in the movies
that share the same “star" with his historically liked ones, while
another user may be more concerned about the “genre" of movies.

To characterize the topological proximity structure of item� , we
compute the linear combination of �’s neighborhood:

vuN (�) =
X

e 2N (�)
�̃
u
r�,e e, (2)

where �̃ur�,e is the normalized user-relation score

�̃
u
r�,e =

exp (�ur�,e)P
e 2N (�) exp (�ur�,e)

, (3)

and e is the representation of entity e . User-relation scores act
as personalized �lters when computing an entity’s neighborhood
representation, since we aggregate the neighbors with bias with
respect to these user-speci�c scores.

In a real-world knowledge graph, the size of N (e) may vary
signi�cantly over all entities. To keep the computational pattern of
each batch �xed and more e�cient, we uniformly sample a �xed-
size set of neighbors for each entity instead of using its full neigh-
bors. Speci�cally, we compute the neighborhood representation of
entity � as vuS (�) , where S (�) , {e | e ⇠ N (�)} and |S (�) | = K is
a con�gurable constant.3 In KGCN, S (�) is also called the (single-
layer) receptive �eld of entity � , as the �nal representation of � is
sensitive to these locations. Figure 1a gives an illustrative example
of a two-layer receptive �eld for a given entity, where K is set as 2.

The �nal step in a KGCN layer is to aggregate the entity represen-
tation v and its neighborhood representation vuS (�) into a single vec-

tor. We implement three types of aggregators a�� : Rd ⇥ Rd ! Rd
in KGCN:
• Sum aggregator takes the summation of two representation
vectors, followed by a nonlinear transformation:

a��sum = �

✓
W · (v + vuS (�)) + b

◆
, (4)

whereW and b are transformation weight and bias, respec-
tively, and � is the nonlinear function such ReLU.
• Concat aggregator [7] concatenates the two representation
vectors �rst before applying nonlinear transformation:

a��concat = �

✓
W · concat (v, vuS (�)) + b

◆
. (5)

2The knowledge graph G is treated undirected.
3Technically, S (�) may contain duplicates if N (�) < K .

ℎ=1

ℎ=2

(a) (b)

Figure 1: (a) A two-layer receptive�eld (green entities) of the
blue entity in a KG. (b) The framework of KGCN.

• Neighbor aggregator [15] directly takes the neighborhood
representation of entity � as the output representation:

a��nei�hbor = �

✓
W · vuS (�) + b

◆
. (6)

Aggregation is a key step in KGCN, because the representation of
an item is bound up with its neighbors by aggregation. We will
evaluate the three aggregators in experiments.

3.3 Learning Algorithm
Through a single KGCN layer, the �nal representation of an entity
is dependent on itself as well as its immediate neighbors, which we
name 1-order entity representation. It is natural to extend KGCN
from one layer to multiple layers to reasonably explore users’ poten-
tial interests in a broader and deeper way. The technique is intuitive:
Propagating the initial representation of each entity (0-order repre-
sentation) to its neighbors leads to 1-order entity representation,
then we can repeat this procedure, i.e., further propagating and ag-
gregating 1-order representations to obtain 2-order ones. Generally
speaking, the h-order representation of an entity is a mixture of
initial representations of itself and its neighbors up to h hops away.
This is an important property for KGCN, which we will discuss in
the next subsection.

The formal description of the above steps is presented in Al-
gorithm 1. H denotes the maximum depth of receptive �eld (or
equivalently, the number of aggregation iterations), and a su�x [h]
attached by a representation vector denotes h-order. For a given
user-item pair (u,�) (line 2), we �rst calculate the receptive �eldM
of � in an iterative layer-by-layer manner (line 3, 13-19). Then the
aggregation is repeated H times (line 5): In iteration h, we calculate
the neighborhood representation of each entity e 2M[h] (line 7),
then aggregate it with its own representation eu [h � 1] to obtain
the one to be used at the next iteration (line 8). The �nal H -order
entity representation is denoted as vu (line 9), which is fed into a
function f : Rd ⇥ Rd ! R together with user representation u for
predicting the probability:

�̂u� = f (u, vu). (7)

Figure 1b illustrates the KGCN algorithm in one iteration, in
which the entity representation vu [h] and neighborhood repre-
sentations (green nodes) of a given node are mixed to form its
representation for the next iteration (blue node).

3309

GNNs?

Heterogeneous Graph:
Ø Nodes: entities (Items)
Ø Edges: relations

Side information about items: Knowledge Graph (KG)

Triples: (head, relation, tail)

Forrest Gump
(items) Robert Zemeckis

film.film.director

Knowledge Graph Convolutional Networks for Recommender Systems, WWW 2019. 54

KGCN (WWW’19)
• Representation Aggregation of neighboring entities

3.2 KGCN Layer
KGCN is proposed to capture high-order structural proximity among
entities in a knowledge graph.We start by describing a single KGCN
layer in this subsection. Consider a candidate pair of user u and
item (entity) � . We use N (�) to denote the set of entities directly
connected to � ,2 and rei ,ej to denote the relation between entity ei
and ej . We also use a function � : Rd ⇥Rd ! R (e.g., inner product)
to compute the score between a user and a relation:

�
u
r = �(u, r), (1)

where u 2 Rd and r 2 Rd are the representations of user u and
relation r , respectively, d is the dimension of representations. In
general, �ur characterizes the importance of relation r to user u. For
example, a user may have more potential interests in the movies
that share the same “star" with his historically liked ones, while
another user may be more concerned about the “genre" of movies.

To characterize the topological proximity structure of item� , we
compute the linear combination of �’s neighborhood:

vuN (�) =
X

e 2N (�)
�̃
u
r�,e e, (2)

where �̃ur�,e is the normalized user-relation score

�̃
u
r�,e =

exp (�ur�,e)P
e 2N (�) exp (�ur�,e)

, (3)

and e is the representation of entity e . User-relation scores act
as personalized �lters when computing an entity’s neighborhood
representation, since we aggregate the neighbors with bias with
respect to these user-speci�c scores.

In a real-world knowledge graph, the size of N (e) may vary
signi�cantly over all entities. To keep the computational pattern of
each batch �xed and more e�cient, we uniformly sample a �xed-
size set of neighbors for each entity instead of using its full neigh-
bors. Speci�cally, we compute the neighborhood representation of
entity � as vuS (�) , where S (�) , {e | e ⇠ N (�)} and |S (�) | = K is
a con�gurable constant.3 In KGCN, S (�) is also called the (single-
layer) receptive �eld of entity � , as the �nal representation of � is
sensitive to these locations. Figure 1a gives an illustrative example
of a two-layer receptive �eld for a given entity, where K is set as 2.

The �nal step in a KGCN layer is to aggregate the entity represen-
tation v and its neighborhood representation vuS (�) into a single vec-

tor. We implement three types of aggregators a�� : Rd ⇥ Rd ! Rd
in KGCN:
• Sum aggregator takes the summation of two representation
vectors, followed by a nonlinear transformation:

a��sum = �

✓
W · (v + vuS (�)) + b

◆
, (4)

whereW and b are transformation weight and bias, respec-
tively, and � is the nonlinear function such ReLU.
• Concat aggregator [7] concatenates the two representation
vectors �rst before applying nonlinear transformation:

a��concat = �

✓
W · concat (v, vuS (�)) + b

◆
. (5)

2The knowledge graph G is treated undirected.
3Technically, S (�) may contain duplicates if N (�) < K .

(a)

𝐞𝑢[ℎ + 1]𝐞1𝑢[ℎ]

𝐞2𝑢[ℎ] 𝐞3𝑢[ℎ]

𝐞4𝑢[ℎ]

𝜋𝑟𝑣,𝑒2
𝑢

e𝑢[ℎ]

……

𝐞𝑢[𝐻]item 𝐮 user

ො𝑦
predicted probability

iteration ℎ + 1

𝜋𝑟𝑣,𝑒1
𝑢

𝜋𝑟𝑣,𝑒3
𝑢

𝜋𝑟𝑣,𝑒4
𝑢

(𝐯𝑢)

(b)

Figure 1: (a) A two-layer receptive�eld (green entities) of the
blue entity in a KG. (b) The framework of KGCN.

• Neighbor aggregator [15] directly takes the neighborhood
representation of entity � as the output representation:

a��nei�hbor = �

✓
W · vuS (�) + b

◆
. (6)

Aggregation is a key step in KGCN, because the representation of
an item is bound up with its neighbors by aggregation. We will
evaluate the three aggregators in experiments.

3.3 Learning Algorithm
Through a single KGCN layer, the �nal representation of an entity
is dependent on itself as well as its immediate neighbors, which we
name 1-order entity representation. It is natural to extend KGCN
from one layer to multiple layers to reasonably explore users’ poten-
tial interests in a broader and deeper way. The technique is intuitive:
Propagating the initial representation of each entity (0-order repre-
sentation) to its neighbors leads to 1-order entity representation,
then we can repeat this procedure, i.e., further propagating and ag-
gregating 1-order representations to obtain 2-order ones. Generally
speaking, the h-order representation of an entity is a mixture of
initial representations of itself and its neighbors up to h hops away.
This is an important property for KGCN, which we will discuss in
the next subsection.

The formal description of the above steps is presented in Al-
gorithm 1. H denotes the maximum depth of receptive �eld (or
equivalently, the number of aggregation iterations), and a su�x [h]
attached by a representation vector denotes h-order. For a given
user-item pair (u,�) (line 2), we �rst calculate the receptive �eldM
of � in an iterative layer-by-layer manner (line 3, 13-19). Then the
aggregation is repeated H times (line 5): In iteration h, we calculate
the neighborhood representation of each entity e 2M[h] (line 7),
then aggregate it with its own representation eu [h � 1] to obtain
the one to be used at the next iteration (line 8). The �nal H -order
entity representation is denoted as vu (line 9), which is fed into a
function f : Rd ⇥ Rd ! R together with user representation u for
predicting the probability:

�̂u� = f (u, vu). (7)

Figure 1b illustrates the KGCN algorithm in one iteration, in
which the entity representation vu [h] and neighborhood repre-
sentations (green nodes) of a given node are mixed to form its
representation for the next iteration (blue node).

3309

Transform a heterogeneous KG into a
user-personalized weighted graph

Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. 55

KGCN (WWW’19)
• Representation Aggregation of neighboring entities

3.2 KGCN Layer
KGCN is proposed to capture high-order structural proximity among
entities in a knowledge graph.We start by describing a single KGCN
layer in this subsection. Consider a candidate pair of user u and
item (entity) � . We use N (�) to denote the set of entities directly
connected to � ,2 and rei ,ej to denote the relation between entity ei
and ej . We also use a function � : Rd ⇥Rd ! R (e.g., inner product)
to compute the score between a user and a relation:

�
u
r = �(u, r), (1)

where u 2 Rd and r 2 Rd are the representations of user u and
relation r , respectively, d is the dimension of representations. In
general, �ur characterizes the importance of relation r to user u. For
example, a user may have more potential interests in the movies
that share the same “star" with his historically liked ones, while
another user may be more concerned about the “genre" of movies.

To characterize the topological proximity structure of item� , we
compute the linear combination of �’s neighborhood:

vuN (�) =
X

e 2N (�)
�̃
u
r�,e e, (2)

where �̃ur�,e is the normalized user-relation score

�̃
u
r�,e =

exp (�ur�,e)P
e 2N (�) exp (�ur�,e)

, (3)

and e is the representation of entity e . User-relation scores act
as personalized �lters when computing an entity’s neighborhood
representation, since we aggregate the neighbors with bias with
respect to these user-speci�c scores.

In a real-world knowledge graph, the size of N (e) may vary
signi�cantly over all entities. To keep the computational pattern of
each batch �xed and more e�cient, we uniformly sample a �xed-
size set of neighbors for each entity instead of using its full neigh-
bors. Speci�cally, we compute the neighborhood representation of
entity � as vuS (�) , where S (�) , {e | e ⇠ N (�)} and |S (�) | = K is
a con�gurable constant.3 In KGCN, S (�) is also called the (single-
layer) receptive �eld of entity � , as the �nal representation of � is
sensitive to these locations. Figure 1a gives an illustrative example
of a two-layer receptive �eld for a given entity, where K is set as 2.

The �nal step in a KGCN layer is to aggregate the entity represen-
tation v and its neighborhood representation vuS (�) into a single vec-

tor. We implement three types of aggregators a�� : Rd ⇥ Rd ! Rd
in KGCN:
• Sum aggregator takes the summation of two representation
vectors, followed by a nonlinear transformation:

a��sum = �

✓
W · (v + vuS (�)) + b

◆
, (4)

whereW and b are transformation weight and bias, respec-
tively, and � is the nonlinear function such ReLU.
• Concat aggregator [7] concatenates the two representation
vectors �rst before applying nonlinear transformation:

a��concat = �

✓
W · concat (v, vuS (�)) + b

◆
. (5)

2The knowledge graph G is treated undirected.
3Technically, S (�) may contain duplicates if N (�) < K .

(a)

𝐞𝑢[ℎ + 1]𝐞1𝑢[ℎ]

𝐞2𝑢[ℎ] 𝐞3𝑢[ℎ]

𝐞4𝑢[ℎ]

𝜋𝑟𝑣,𝑒2
𝑢

e𝑢[ℎ]

……

𝐞𝑢[𝐻]item 𝐮 user

ො𝑦
predicted probability

iteration ℎ + 1

𝜋𝑟𝑣,𝑒1
𝑢

𝜋𝑟𝑣,𝑒3
𝑢

𝜋𝑟𝑣,𝑒4
𝑢

(𝐯𝑢)

(b)

Figure 1: (a) A two-layer receptive�eld (green entities) of the
blue entity in a KG. (b) The framework of KGCN.

• Neighbor aggregator [15] directly takes the neighborhood
representation of entity � as the output representation:

a��nei�hbor = �

✓
W · vuS (�) + b

◆
. (6)

Aggregation is a key step in KGCN, because the representation of
an item is bound up with its neighbors by aggregation. We will
evaluate the three aggregators in experiments.

3.3 Learning Algorithm
Through a single KGCN layer, the �nal representation of an entity
is dependent on itself as well as its immediate neighbors, which we
name 1-order entity representation. It is natural to extend KGCN
from one layer to multiple layers to reasonably explore users’ poten-
tial interests in a broader and deeper way. The technique is intuitive:
Propagating the initial representation of each entity (0-order repre-
sentation) to its neighbors leads to 1-order entity representation,
then we can repeat this procedure, i.e., further propagating and ag-
gregating 1-order representations to obtain 2-order ones. Generally
speaking, the h-order representation of an entity is a mixture of
initial representations of itself and its neighbors up to h hops away.
This is an important property for KGCN, which we will discuss in
the next subsection.

The formal description of the above steps is presented in Al-
gorithm 1. H denotes the maximum depth of receptive �eld (or
equivalently, the number of aggregation iterations), and a su�x [h]
attached by a representation vector denotes h-order. For a given
user-item pair (u,�) (line 2), we �rst calculate the receptive �eldM
of � in an iterative layer-by-layer manner (line 3, 13-19). Then the
aggregation is repeated H times (line 5): In iteration h, we calculate
the neighborhood representation of each entity e 2M[h] (line 7),
then aggregate it with its own representation eu [h � 1] to obtain
the one to be used at the next iteration (line 8). The �nal H -order
entity representation is denoted as vu (line 9), which is fed into a
function f : Rd ⇥ Rd ! R together with user representation u for
predicting the probability:

�̂u� = f (u, vu). (7)

Figure 1b illustrates the KGCN algorithm in one iteration, in
which the entity representation vu [h] and neighborhood repre-
sentations (green nodes) of a given node are mixed to form its
representation for the next iteration (blue node).

3309

Transform a heterogeneous KG into a
user-personalized weighted graph

Normalized

user-specific relation
(e.g., inner product)

Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. 56

KGCN (WWW’19)
• Representation Aggregation of neighboring entities

3.2 KGCN Layer
KGCN is proposed to capture high-order structural proximity among
entities in a knowledge graph.We start by describing a single KGCN
layer in this subsection. Consider a candidate pair of user u and
item (entity) � . We use N (�) to denote the set of entities directly
connected to � ,2 and rei ,ej to denote the relation between entity ei
and ej . We also use a function � : Rd ⇥Rd ! R (e.g., inner product)
to compute the score between a user and a relation:

�
u
r = �(u, r), (1)

where u 2 Rd and r 2 Rd are the representations of user u and
relation r , respectively, d is the dimension of representations. In
general, �ur characterizes the importance of relation r to user u. For
example, a user may have more potential interests in the movies
that share the same “star" with his historically liked ones, while
another user may be more concerned about the “genre" of movies.

To characterize the topological proximity structure of item� , we
compute the linear combination of �’s neighborhood:

vuN (�) =
X

e 2N (�)
�̃
u
r�,e e, (2)

where �̃ur�,e is the normalized user-relation score

�̃
u
r�,e =

exp (�ur�,e)P
e 2N (�) exp (�ur�,e)

, (3)

and e is the representation of entity e . User-relation scores act
as personalized �lters when computing an entity’s neighborhood
representation, since we aggregate the neighbors with bias with
respect to these user-speci�c scores.

In a real-world knowledge graph, the size of N (e) may vary
signi�cantly over all entities. To keep the computational pattern of
each batch �xed and more e�cient, we uniformly sample a �xed-
size set of neighbors for each entity instead of using its full neigh-
bors. Speci�cally, we compute the neighborhood representation of
entity � as vuS (�) , where S (�) , {e | e ⇠ N (�)} and |S (�) | = K is
a con�gurable constant.3 In KGCN, S (�) is also called the (single-
layer) receptive �eld of entity � , as the �nal representation of � is
sensitive to these locations. Figure 1a gives an illustrative example
of a two-layer receptive �eld for a given entity, where K is set as 2.

The �nal step in a KGCN layer is to aggregate the entity represen-
tation v and its neighborhood representation vuS (�) into a single vec-

tor. We implement three types of aggregators a�� : Rd ⇥ Rd ! Rd
in KGCN:
• Sum aggregator takes the summation of two representation
vectors, followed by a nonlinear transformation:

a��sum = �

✓
W · (v + vuS (�)) + b

◆
, (4)

whereW and b are transformation weight and bias, respec-
tively, and � is the nonlinear function such ReLU.
• Concat aggregator [7] concatenates the two representation
vectors �rst before applying nonlinear transformation:

a��concat = �

✓
W · concat (v, vuS (�)) + b

◆
. (5)

2The knowledge graph G is treated undirected.
3Technically, S (�) may contain duplicates if N (�) < K .

(a)

𝐞𝑢[ℎ + 1]𝐞1𝑢[ℎ]

𝐞2𝑢[ℎ] 𝐞3𝑢[ℎ]

𝐞4𝑢[ℎ]

𝜋𝑟𝑣,𝑒2
𝑢

e𝑢[ℎ]

……

𝐞𝑢[𝐻]item 𝐮 user

ො𝑦
predicted probability

iteration ℎ + 1

𝜋𝑟𝑣,𝑒1
𝑢

𝜋𝑟𝑣,𝑒3
𝑢

𝜋𝑟𝑣,𝑒4
𝑢

(𝐯𝑢)

(b)

Figure 1: (a) A two-layer receptive�eld (green entities) of the
blue entity in a KG. (b) The framework of KGCN.

• Neighbor aggregator [15] directly takes the neighborhood
representation of entity � as the output representation:

a��nei�hbor = �

✓
W · vuS (�) + b

◆
. (6)

Aggregation is a key step in KGCN, because the representation of
an item is bound up with its neighbors by aggregation. We will
evaluate the three aggregators in experiments.

3.3 Learning Algorithm
Through a single KGCN layer, the �nal representation of an entity
is dependent on itself as well as its immediate neighbors, which we
name 1-order entity representation. It is natural to extend KGCN
from one layer to multiple layers to reasonably explore users’ poten-
tial interests in a broader and deeper way. The technique is intuitive:
Propagating the initial representation of each entity (0-order repre-
sentation) to its neighbors leads to 1-order entity representation,
then we can repeat this procedure, i.e., further propagating and ag-
gregating 1-order representations to obtain 2-order ones. Generally
speaking, the h-order representation of an entity is a mixture of
initial representations of itself and its neighbors up to h hops away.
This is an important property for KGCN, which we will discuss in
the next subsection.

The formal description of the above steps is presented in Al-
gorithm 1. H denotes the maximum depth of receptive �eld (or
equivalently, the number of aggregation iterations), and a su�x [h]
attached by a representation vector denotes h-order. For a given
user-item pair (u,�) (line 2), we �rst calculate the receptive �eldM
of � in an iterative layer-by-layer manner (line 3, 13-19). Then the
aggregation is repeated H times (line 5): In iteration h, we calculate
the neighborhood representation of each entity e 2M[h] (line 7),
then aggregate it with its own representation eu [h � 1] to obtain
the one to be used at the next iteration (line 8). The �nal H -order
entity representation is denoted as vu (line 9), which is fed into a
function f : Rd ⇥ Rd ! R together with user representation u for
predicting the probability:

�̂u� = f (u, vu). (7)

Figure 1b illustrates the KGCN algorithm in one iteration, in
which the entity representation vu [h] and neighborhood repre-
sentations (green nodes) of a given node are mixed to form its
representation for the next iteration (blue node).

3309

Transform a heterogeneous KG into a
user-personalized weighted graph

Normalized

user-specific relation
(e.g., inner product)

Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. 57

58

KGAT

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

User-item Graph 𝒖𝟏→
𝒓𝟏 𝒊𝟏

Knowledge Graph 𝒊𝟏→
𝒓𝟐 𝒆𝟏

59

KGAT

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

User-item Graph 𝒖𝟏→
𝒓𝟏 𝒊𝟏

Knowledge Graph 𝒊𝟏→
𝒓𝟐 𝒆𝟏

Collaborative Knowledge Graph
(CKG)

To fully exploit high-order relations in CKG
e.g., the long-range connectivities:

𝑢!→
&! 𝑖!→

&" 𝑒!
' &" 𝑖(

' &! 𝑢(, 𝑢"

𝑢!→
&! 𝑖!→

&" 𝑒!
' &# 𝑖", 𝑖#

60

KGAT

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

61

KGAT

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

Information Propagation:

Knowledge-aware Attention:

Information Aggregation:

62

KGAT

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 2

AirPods

iPhone XS

iPad Pro

MacBook Pro

MacBook Air

MacBook
Apple Pencil

Smart Keyboard
USB Type-C Hub

(c) Item-item Graph

(b) User-User Social Graph

…

5

3

1

iPhone XS

Electric Toothbrush

iPad Pro (a) User-item Graph

User-item Interactions
Social Relations
Item-item Relations

Item-item Graph

User-item Graph

User-User Social Graph

1 53

(d) Graph Data in Social Recommendation

Figure 1: Graph Data in Social Recommendations. It contains three graphs including the user-item graph (a), the user-user
social graph (b), and the item-item graph (c). Note that the number on the edges of the user-item graph denotes the
opinions (or rating score) of the users on the items via the interactions.

can potentially be used to profile items. That is because
items are not independent and are likely to be similar
or related [21], [22]. For example, users who bought an
Apple iPhone XS are likely to consider purchasing the
Apple AirPods because they are associated with the same
attribute (i.e., designed by Apple Inc.). Thus, when a user
plans to purchase a notebook with MacOS, Macbook Air,
Macbook and Macbook Pro, these items are bundled together
for comparison because of their similar functionality. In fact,
the relations between items have already facilitated many
important applications, such as navigation between related
items, discovery of new or previously unknown items, and
identification of interesting item combinations. Specifically,
Amazon allows users to navigate between items through
relations [21], such as ’users who bought X also bought Y’
and ’users who viewed X also viewed Y’. Apparently, these
relations between items can also be represented as a graph,
denoted as an item-item graph, as shown in Figure 1 (c).
Therefore, it is desirable to consider the relations among
items for enhancing the representation learning of items in
social recommendations.

With these three graphs, data in social recommendations
can be represented as a heterogeneous graph, as shown
in Figure 1 (d). Note that users (who can be seen as
bridges) are simultaneously involved in both explicit graphs
(bridging the user-item graph and social graph), while items
bridge the user-item graph and item-item graph. Moreover,
instead of learning representations of items and users from
the user-item graph only, it is important to incorporate

the social graph into the process of learning better user
representations, and to integrate the item-item graph into
the process of learning better item representations. Learning
representations of items and users are the key to building
social recommender systems. Thus, given their advantages,
GNNs provide unprecedented opportunities to advance
social recommendations.

Nevertheless, building social recommender systems
based on GNNs faces challenges. The social graph and the
user-item graph in a social recommender system provide
information about users from different perspectives, while
the item-item graph and user-item graph contain valuable
signals that are beneficial to infer the profiles of items.
It is important to aggregate information from these three
graphs to learn better user and item representations from
different perspectives. Thus, the first challenge is how to
inherently combine these graphs. Moreover, the user-item
graph not only contains interactions between users and
items, but also includes users’ opinions on items. These
opinions can be explicitly given by the user as a rating
score, generally within a certain numerical scale (e.g.,
5-star). For example, as shown in Figure 1 (a), the user
interacts with the items of “iPhone XS” and “Electric
Toothbrush”, and the user likes the “iPhone XS” while
disliking the “Electric Toothbrush”. These items’ opinions
given by users provide valuable signals associated with
both the users and items, since these opinions can capture
users preferences on items while reflecting the varying
characteristics of items, as provided by the users. Therefore,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on April 03,2021 at 08:49:25 UTC from IEEE Xplore. Restrictions apply.

63

GraphRec+

A Graph Neural Network Framework for Social Recommendations, TKDE 2020
Graph Neural Networks for Social Recommendation, WWW 2019.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 2

AirPods

iPhone XS

iPad Pro

MacBook Pro

MacBook Air

MacBook
Apple Pencil

Smart Keyboard
USB Type-C Hub

(c) Item-item Graph

(b) User-User Social Graph

…

5

3

1

iPhone XS

Electric Toothbrush

iPad Pro (a) User-item Graph

User-item Interactions
Social Relations
Item-item Relations

Item-item Graph

User-item Graph

User-User Social Graph

1 53

(d) Graph Data in Social Recommendation

Figure 1: Graph Data in Social Recommendations. It contains three graphs including the user-item graph (a), the user-user
social graph (b), and the item-item graph (c). Note that the number on the edges of the user-item graph denotes the
opinions (or rating score) of the users on the items via the interactions.

can potentially be used to profile items. That is because
items are not independent and are likely to be similar
or related [21], [22]. For example, users who bought an
Apple iPhone XS are likely to consider purchasing the
Apple AirPods because they are associated with the same
attribute (i.e., designed by Apple Inc.). Thus, when a user
plans to purchase a notebook with MacOS, Macbook Air,
Macbook and Macbook Pro, these items are bundled together
for comparison because of their similar functionality. In fact,
the relations between items have already facilitated many
important applications, such as navigation between related
items, discovery of new or previously unknown items, and
identification of interesting item combinations. Specifically,
Amazon allows users to navigate between items through
relations [21], such as ’users who bought X also bought Y’
and ’users who viewed X also viewed Y’. Apparently, these
relations between items can also be represented as a graph,
denoted as an item-item graph, as shown in Figure 1 (c).
Therefore, it is desirable to consider the relations among
items for enhancing the representation learning of items in
social recommendations.

With these three graphs, data in social recommendations
can be represented as a heterogeneous graph, as shown
in Figure 1 (d). Note that users (who can be seen as
bridges) are simultaneously involved in both explicit graphs
(bridging the user-item graph and social graph), while items
bridge the user-item graph and item-item graph. Moreover,
instead of learning representations of items and users from
the user-item graph only, it is important to incorporate

the social graph into the process of learning better user
representations, and to integrate the item-item graph into
the process of learning better item representations. Learning
representations of items and users are the key to building
social recommender systems. Thus, given their advantages,
GNNs provide unprecedented opportunities to advance
social recommendations.

Nevertheless, building social recommender systems
based on GNNs faces challenges. The social graph and the
user-item graph in a social recommender system provide
information about users from different perspectives, while
the item-item graph and user-item graph contain valuable
signals that are beneficial to infer the profiles of items.
It is important to aggregate information from these three
graphs to learn better user and item representations from
different perspectives. Thus, the first challenge is how to
inherently combine these graphs. Moreover, the user-item
graph not only contains interactions between users and
items, but also includes users’ opinions on items. These
opinions can be explicitly given by the user as a rating
score, generally within a certain numerical scale (e.g.,
5-star). For example, as shown in Figure 1 (a), the user
interacts with the items of “iPhone XS” and “Electric
Toothbrush”, and the user likes the “iPhone XS” while
disliking the “Electric Toothbrush”. These items’ opinions
given by users provide valuable signals associated with
both the users and items, since these opinions can capture
users preferences on items while reflecting the varying
characteristics of items, as provided by the users. Therefore,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on April 03,2021 at 08:49:25 UTC from IEEE Xplore. Restrictions apply.

64

GraphRec+

Ø ‘users who bought A also bought B’

Ø ‘users who viewed A also viewed B’

Substitutable and Complementary Items

Item-item Graph

E.g.,

A Graph Neural Network Framework for Social Recommendations, TKDE 2020
Graph Neural Networks for Social Recommendation, WWW 2019.

65

GraphRec+IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2019 4

concat

…Opinion Embedding

Item Embedding
User Embedding

… …

Attention Network
μ1 μ2

μ3

User-space

Item Modeling

User Aggregation

Score Prediction

User Latent Factor

concat

… …

Attention Network
α1

α2

α3

Item-space

Item-space Item-space Item-space

Social-space

Attention Network

……
β2

β3

β1

User Modeling

Item
Aggregation Social Aggregation

Item Latent Factor

…

concat

User-space User-space User--space

item2item-space

Attention Network

……

!!
!"

!#

Item-space: Item-space User Latent Factor
Social-space: Social-space User Latent Factor
User-space: User-space Item Latent Factor
Item2item-space: Item2item-space Item Latent Factor

Item2item Aggregation

!!

…

…

5

3

1

iPhone XS

Electric
Toothbrush

iPad Pro

AirPods

iPhone XS

iPad Pro

MacBook
Pro

Smart
Keyboard

USB Type-C
Hub

Figure 2: The overall architecture of the proposed model. It contains three major components: user modeling, item
modeling, and score prediction.

tively. The item aggregation can be utilized to understand
the users via interactions with items in the user-item
graph (or item-space). The social aggregation can be
used to understand the relationships between users in the
social graph, which can help model users from the social
perspective (or social-space). It is then intuitive to obtain
user latent factors by combining information from both the
item space and the social space.

The second component, item modeling aims to learn
latent factors of the items. The item representations can
be learned from the user perspectives in the user-item
graph, while relationships between items in the item-item
graph are also helpful in enhancing item representation
learning. In particular, we introduce two aggregations for
extracting useful information from these two graph types.
One is user aggregation, which is utilized to model the
representation of items via the interactions with users in the
user-item graph (or user-space). The other one is item2item

aggregation, which aims to enhance item representations
from the item-item graph (or item2item-space). Information
from both the user space and the item2item space can be
combined to profile the final item latent factors.

The third component, rating prediction aims to learn the
model parameters via prediction by integrating user and
item modeling components. Next, we will detail each model
component.

2.3 User Modeling
User modeling aims to learn user latent factors, denoted as
hi 2 Rd for user ui. The challenge is how to inherently
combine the user-item graph and social graph. To address
this challenge, we first use two types of aggregations to
learn factors from the two graphs, as shown in the left

part of Figure 2. The first aggregation, denoted as the item
aggregation, is utilized to learn item-space user latent factor
hI
i 2 Rd from the user-item graph. The second aggregation

is social aggregation, where social-space user latent factor
hS
i 2 Rd is learned from the social graph. These two factors

are then combined to form the final user latent factors hi.
Next, we will introduce item aggregation, social aggregation
and how to combine user latent factors from both item-space
and social-space.

2.3.1 Item Aggregation: Item-space User Latent Factor

As the user-item graph contains not only interactions
between users and items, but also users’ opinions (or rating
scores) on items, we provide a principled approach to jointly
capture interactions and opinions in the user-item graph
for learning item-space user latent factors hI

i for a user ui,
which is used to model user latent factors via interactions in
the user-item graph.

The purpose of item aggregation is to learn item-space
user latent factor hI

i by considering items a user ui has
interacted with and users’ opinions on these items. To math-
ematically represent this aggregation, we use the following
function:

hI
i = �(W ·AGGitems({xia, 8a 2 C(i)}) + b) (1)

where C(i) is the set of items user ui has interacted with
(or ui’s neighbors in the user-item graph), xia is a represen-
tation vector to denote opinion-aware interaction between
ui and an item va, and AGGitems is the item aggregation
function. In addition, � denotes a non-linear activation
function (i.e., a rectified linear unit), and W and b are the
weight and bias of a neural network, respectively. Next

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on April 03,2021 at 08:49:25 UTC from IEEE Xplore. Restrictions apply.

A Graph Neural Network Framework for Social Recommendations, TKDE 2020
Graph Neural Networks for Social Recommendation, WWW 2019.

66

Conclusion: Future Directions
Depth

When the deeper GNNs can help in recommender systems?

67

Conclusion: Future Directions
Depth

When the deeper GNNs can help in recommender systems?

Security (Data Poisoning Attack & Defense)
Ø Edges

user-item interactions
social relations
knowledge graph

Ø Node (users/items) Features
Ø Local Graph Structure

