

Graph Neural Networks for Recommendations

Wenqi Fan

The Hong Kong Polytechnic University

https://wenqifan03.github.io, wenqifan@polyu.edu.hk

Tutorial website: <u>https://advanced-recommender-systems.github.io/ijcai2021-tutorial/</u>

Learning and Reasoning on Graph for Recommendation, WSDM 2020

 v_1 among users/items

Learning and Reasoning on Graph for Recommendation, WSDM 2020

... ...

Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...

Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...

Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...

Most of the data in RS has essentially a graph structure

- E-commerce, Content Sharing, Social Networking ...

How to solve such issue?

Explore & Exploit Relations among Instances

How to solve such issue?

Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods.

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods.

1. Model a local structural information (neighborhood) of a node;

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods.

- 1. Model a local structural information (neighborhood) of a node;
- 2. Aggregation operation;
- 3. Representation update.

GNNs can naturally integrate node feature and the topological structure for graph-structured data.

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

Basic approach: Average neighbor messages and apply a neural network.

 $\mathbf{h}_{v}^{0} = \mathbf{x}_{v}$ Initial 0-th layer embeddings are equal to node v's features

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

k-th layer embedding of node v

 $\mathbf{z}_{v} = \mathbf{h}_{v}^{k}$ Embedding after k layers of neighborhood aggregation.

Semi-supervised Classification with Graph Convolutional Network, ICLR, 2017.

Basic approach: Average neighbor messages and apply a neural network.

 $\mathbf{h}_{v}^{0}=\mathbf{x}_{v}$ Initial 0-th layer embeddings are equal to node v's features

 $\mathbf{z}_{v} = \mathbf{h}_{v}^{k}$ Embedding after k layers of neighborhood aggregation.

Semi-supervised Classification with Graph Convolutional Network, ICLR, 2017.

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

➤ GAT:

Inductive Representation Learning on Large Graphs, NeuIPS, 2017. Graph Attention Networks, ICLR, 2018

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{1}^{k} \cdot \operatorname{AGG}\left(\{\mathbf{h}_{u}^{k-1}, \forall_{u} \in N(u)\}\right), \mathbf{W}_{2}^{k} \cdot \mathbf{h}_{v}^{k}\right]\right)$$

Generalized Aggregation: mean, pooling, LSTM

➢ GAT:

Inductive Representation Learning on Large Graphs, NeuIPS, 2017. Graph Attention Networks, ICLR, 2018

> Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{1}^{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)|}} + \mathbf{W}_{2}^{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE:

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{1}^{k} \cdot \operatorname{AGG}\left(\{\mathbf{h}_{u}^{k-1}, \forall_{u} \in N(u)\}\right), \mathbf{W}_{2}^{k} \cdot \mathbf{h}_{v}^{k}\right]\right)$$

Generalized Aggregation: mean, pooling, LSTM

➢ GAT:

$$\mathbf{h}_{v}^{k} = \sigma \left(\sum_{u \in N(v)} \alpha_{v,u} \mathbf{W}^{k} \mathbf{h}_{u}^{k-1} \right)$$

Learned attention weights

Inductive Representation Learning on Large Graphs, NeuIPS, 2017. Graph Attention Networks, ICLR, 2018

Book: Deep Learning on Graphs

Authors

English Version: <u>Yao Ma</u> and <u>Jiliang Tang</u> Chinese Version: <u>Yiqi Wang</u>, <u>Wei Jin</u>, <u>Yao Ma</u> and <u>Jiliang Tang</u>

https://cse.msu.edu/~mayao4/dlg_book/

15. Advanced Applications in Graph Neural Networks

GNNs based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)
- Graph Trend Networks for Recommendations, arXiv:2108.05552, 2021

Collaborative Filtering with Side Information (Users/Items)

□ Social Recommendation (Users)

- Graph Neural Network for Social Recommendation (WWW'19)
- A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
- A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- □ Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

GNNs based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)
- Graph Trend Networks for Recommendations, arXiv:2108.05552, 2021

Collaborative Filtering with Side Information (Users/Items)

Social Recommendation (Users)

- Graph Neural Network for Social Recommendation (WWW'19)
- A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
- A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- □ Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

Interactions as Bipartite Graph

Bipartite Graph

Interactions as Bipartite Graph

Bipartite Graph

GCMC

User representation learning

Aggregate for each rating: $\mu_{i,r}$

$$=\sum_{j\in\mathcal{N}_{i,r}}\frac{1}{c_{ij}}W_rx_j$$

Bipartite Graph

GCMC

User representation learning

Aggregate for each rating: $\mu_{i,r} = \sum_{j \in \mathcal{N}_{i,r}} \frac{1}{c_{ij}} W_r x_j$

$$u_i = \mathbf{W} \cdot \sigma(accum(u_{i,1}, \dots, u_{i,R}))$$

Item representation learning in a similar way

NGCF

Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the user-item graph
- Construct information flows in the embedding space

NGCF

Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the user-item graph
- Construct information flows in the embedding space

Neural Graph Collaborative Filtering. SIGIR 2019.

NGCF

Neural Graph Collaborative Filtering. SIGIR 2019.

LightGCN

Simplifying GCN for recommendation

Light Graph Convolution (LGC)

discard feature transformation and nonlinear activation

LightGCN

Simplifying GCN for recommendation

discard feature transformation and nonlinear activation

Graph Trend Networks for Recommendations

Unreliable user-item interactions

Embedding Propagation Rule

$$\begin{split} \mathbf{e}_{u}^{k+1} &= \frac{1}{\sqrt{|\mathcal{N}(u)|}} \sum_{i \in \mathcal{N}(u)} \frac{1}{\sqrt{|\mathcal{N}(i)|}} \mathbf{e}_{i}^{k} \\ \mathbf{e}_{i}^{k+1} &= \frac{1}{\sqrt{|\mathcal{N}(i)|}} \sum_{u \in \mathcal{N}(i)} \frac{1}{\sqrt{|\mathcal{N}(u)|}} \mathbf{e}_{u}^{k} \end{split}$$

Overlook unreliable interactions (e.g., random/bait clicks) and uniformly treat all the interactions

E.g., (1) User 3 was affected by the click-bait issue. (2) User 2 bought a one-time item for his mother's birthday present;

Preliminary study

Performance of LightGCN under different perturbation rates.

Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

Preliminary study

Performance of LightGCN under different perturbation rates.

- To build a more reliable and robust recommender system
 - Graph Trend Networks for recommendations (GTN)

Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

Graph Trend Networks for Recommendations

$$\mathbf{e}_{u}^{k+1} = \frac{1}{\sqrt{|\mathcal{N}(u)|}} \sum_{i \in \mathcal{N}(u)} \frac{1}{\sqrt{|\mathcal{N}(i)|}} \mathbf{e}_{i}^{k}$$
$$\mathbf{e}_{i}^{k+1} = \frac{1}{\sqrt{|\mathcal{N}(i)|}} \sum_{u \in \mathcal{N}(i)} \frac{1}{\sqrt{|\mathcal{N}(u)|}} \mathbf{e}_{u}^{k}$$

Matrix form:
$$\mathbf{E}^{K+1} = ilde{\mathbf{A}} \mathbf{E}^k$$

Laplacian smoothing problem

$$\begin{split} & \operatorname*{arg\,min}_{\mathbf{E}\in\mathbb{R}^{(n+m)\times d}} \operatorname{tr}(\mathbf{E}^{\top}(\mathbf{I}-\tilde{\mathbf{A}})\mathbf{E}) \\ & \operatorname{tr}(\mathbf{E}^{\top}(\mathbf{I}-\tilde{\mathbf{A}})\mathbf{E}) = \sum_{(i,j)\in\mathcal{E}} \|\frac{\mathbf{e}_i}{\sqrt{d_i+1}} - \frac{\mathbf{e}_j}{\sqrt{d_j+1}}\|_2^2 \quad \text{edge-wise form} \end{split}$$

Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021. A unified view on graph neural networks as graph signal denoising, arXiv:2010.01777, 2020. $\underset{\mathbf{E}\in\mathbb{R}^{(n+m)\times d}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{E}-\mathbf{E}_{\operatorname{in}}\|_{F}^{2} + \lambda \|\tilde{\Delta}\mathbf{E}\|_{1}$

Preserve the proximity

 $\|\tilde{\Delta}\mathbf{E}\|_1 = \sum_{(i,j)\in\mathcal{E}} \left\|\frac{\mathbf{e}_i}{\sqrt{d_i+1}} - \frac{\mathbf{e}_j}{\sqrt{d_j+1}}\right\|_1.$

Impose embedding smoothness

Embedding smoothness objective:

Graph Trend Networks for Recommendations

GTN

Recommendation performance under different perturbation rates.

Graph Trend Networks for Recommendations. arXiv:2108.05552, 2021.

GNN based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)

Collaborative Filtering with Side Information (Users/Items)

Social Recommendation (Users)

- Graph Neural Network for Social Recommendation (WWW'19)
- A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
- A Graph Neural Network Framework for Social Recommendations (TKDE'20)
- □ Knowledge-graph-aware Recommendation (Items)
 - Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
 - KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

Social Recommendation

Side information about users: social networks

□ Users' preferences are similar to or influenced by the people around them (nearer neighbours) [Tang et. al, 2013]

Social Recommendation

Side information about users: social networks

Users' preferences are similar to or influenced by the people around them (nearer neighbours) [Tang et. al, 2013]

Graph Data in Social Recommendation

GraphRec

Graph Data in Social Recommendation

GraphRec

GraphRec

GraphRec: User Modeling

□ Social Aggregation in user-user social graph

Users are likely to share more similar tastes with strong ties than weak ties.

attentive weight

Graph Neural Networks for Social Recommendation. WWW 2019.

GraphRec: User Modeling

Social Aggregation in user-user social graph

Users are likely to share more similar tastes with strong ties than weak ties.

- Attention network to differentiate the importance weight.

Aggregating item-space users messages from

social neighbors

User Modeling: Social Aggregation

User Modeling: Social Aggregation

GNNs based Recommendation

Collaborative Filtering

- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD'18)
- Graph Convolutional Matrix Completion (KDD'18 Deep Learning Day)
- Neural Graph Collaborative Filtering (SIGIR'19)
- LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR'20)

Collaborative Filtering with Side Information (Users/Items)

G Social Recommendation (Users)

- Graph Neural Network for Social Recommendation (WWW'19)
- A Neural Influence Diffusion Model for Social Recommendation (SIGIR'19)
- A Graph Neural Network Framework for Social Recommendations (TKDE'20)

□ Knowledge-graph-aware Recommendation (Items)

- Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization (KDD'19 and WWW'19)
- KGAT: Knowledge Graph Attention Network for Recommendation (KDD'19)

Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:

- Nodes: entities (Items)
- Edges: relations

Triples: (head, relation, tail)

Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:

- Nodes: entities (Items)
- Edges: relations

Triples: (head, relation, tail)

Knowledge Graph Convolutional Networks for Recommender Systems, WWW 2019.

54

KGCN (WWW'19)

Heterogeneous Graph:

Side information about items: Knowledge Graph (KG)

• Representation Aggregation of neighboring entities

• Representation Aggregation of neighboring entities

Representation Aggregation of neighboring entities

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

KGAT: Knowledge graph attention network for recommendation. KDD 2019.

C

i10

$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}, \quad \mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)} \qquad \hat{y}(u, i) = \mathbf{e}_{u}^{*} {}^{\top} \mathbf{e}_{i}^{*}$$

GraphRec+

A Graph Neural Network Framework for Social Recommendations, TKDE 2020 Graph Neural Networks for Social Recommendation, WWW 2019.

A Graph Neural Network Framework for Social Recommendations, TKDE 2020 Graph Neural Networks for Social Recommendation, WWW 2019.

GraphRec+

A Graph Neural Network Framework for Social Recommendations, TKDE 2020 Graph Neural Networks for Social Recommendation, WWW 2019.

Conclusion: Future Directions

Depth

When the deeper GNNs can help in recommender systems?

Conclusion: Future Directions

Depth

When the deeper GNNs can help in recommender systems?

Security (Data Poisoning Attack & Defense)

- Edges
 - user-item interactions
 - social relations
 - knowledge graph
- Node (users/items) Features
- Local Graph Structure