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 Security (Attacking) in Recommender Systems
» Data poisoning/shilling attacks: promote/demote a set of items
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{7 Target items being recommended

) A General Attacking Framework
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) Attack settings

JWhite/grey-box attacks vs. Black-box attacks.
* have full/partial knowledge of the victim model/have no

knowledge.
White- Black-
box box
¢ >
High Adversary’s Knowledge Low

JTargeted Attacks vs. Non-Targeted Attacks.

* attack specific target items / hurt the overall recommendation
performance.



) Adversarial Attacks

= White-box Attacks
- Data Poisoning Attacks on Factorization-Based Collaborative Filtering (NIPS’16)

" Grey-box Attacks

- Revisiting Adversarially Learned Injection Attacks Against Recommender Systems
(RecSys’20)
- Adversarial Attacks on an Oblivious Recommender (RecSys’19)

= Black-box Attacks

- CopyAttack: Attacking Black-box Recommendations via Copying Cross-domain
User Profiles (ICDE’21)

- PoisonRec: An Adaptive Data Poisoning Framework for Attacking Black-box
Recommender Systems (ICDE’20)
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= White-box Attacks
- Data Poisoning Attacks on Factorization-Based Collaborative Filtering (NIPS’16)

" Grey-box Attacks

- Revisiting Adversarially Learned Injection Attacks Against Recommender Systems
(RecSys’20)
- Adversarial Attacks on an Oblivious Recommender (RecSys’19)

= Black-box Attacks

- CopyAttack: Attacking Black-box Recommendations via Copying Cross-domain
User Profiles (ICDE’21)

- PoisonRec: An Adaptive Data Poisoning Framework for Attacking Black-box
Recommender Systems (ICDE’20)



I Preliminaries

= Collaborative Filtering:
= Givendata. M e R™*", €} = {(,7) : M, is observed}
= Goal: matrix completion

min ||Rqe(M — X)||%, s.t. rank(X) <k
XGRan

= Alternating minimization:

‘ Ro(M — UV |2 +2271U[IZ + 22 || V|2
e D URa Iz +2A0 U117 + 22|V |3}

Data Poisoning Attacks on Factorization-Based Collaborative Filtering, NIPS, 2016



} Attacking Formulation

" Inject malicious users M ¢ R™*»

* The CF formulations will be: Tt~l
©,(M; M) = argmin [|Ro(M—-UV )| 54[|Rq(M-UV ") | #+220 (|U[|7+T|1F)+22v [[ V(%
U,U,V

o —

"Goal : M" € argmaxg; ,, ROM(©x(M; M)), M)
= Solution: Projected gradient ascent (PGA)

M(H_l) = PI‘OjM (M(t) + S¢ - VﬁR(ﬁ, M))

10
Data Poisoning Attacks on Factorization-Based Collaborative Filtering, NIPS, 2016
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= White-box Attacks
- Data Poisoning Attacks on Factorization-Based Collaborative Filtering (NIPS’16)

" Grey-box Attacks

« Revisiting Adversarially Learned Injection Attacks Against Recommender Systems
(RecSys’20)
- Adversarial Attacks on an Oblivious Recommender (RecSys’19)

= Black-box Attacks

- CopyAttack: Attacking Black-box Recommendations via Copying Cross-domain
User Profiles (ICDE’21)

- PoisonRec: An Adaptive Data Poisoning Framework for Attacking Black-box
Recommender Systems (ICDE’20)
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Attacker’s Goal: promote certain items availability of being recommended
Attacker’s knowledge: fully (partial) observable dataset

local/surrogate normal data target/victim
recommender (visible to attacker) recOmmendor
ACNEN P (black-box) oMo
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Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. RecSys 2020.
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I How to attack a RecSys: A bi-level optimization problen?'&bfm'éb

= Step 1: Train surrogate model

Training Recommender System

normal data . A
(visible to attacker) Phd AR
Ve \
T |0 | |9 Rt N
, \
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% . !
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1 |} |} 1 ] l I
:1 :0 |1 :1 : v v
FRIETREEN Normal Data Injected fake data
fake data

where X is the fake rating matrix, 8* is the parameters of the
surrogate model

Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. RecSys 2020.
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= Step 2: Evaluate the malicious goal after fake data are consumed

normal data
(visible to attacker)
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Adversarial objective
(defined on prediction on normal data)

- exp(ryi) )
R % )= — 10 ( .
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Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. RecSys 2020.
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Algorithm 1 Learning fake user data with Gradient Descent

1: Input: Normal user data X; learning rate for inner and outer
objective: « and n; max iteration for inner and outer objective:
LandT.

Output: Learned fake user data for malicious goal.
Initialize fake data X(©) and surrogate model parameters 6(*)
fort=1toT do =
for/ =1toLdo =
Optimize inner objective with SGD: o) — gU-1) _ 4. Train surrogate model

—

() B0
V9 (Ltrain(X, Rga-n) + LerainX Y, Ry ) based on new fake data

7. end for - ] _ — Repeat until
8  Evaluate Lygy(Ryw)) and compute gradients V & Lydy L Obtain gradient and converge

9. Update fake data: X(*) = ProjA()?(“l) —-n-VgLygy) | update fake data
10. end for R
11: Return: X7 —

Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. RecSys 2020.



I [Limitations

How to obtain the desired gradients Vi -Eadv

Lacking exactness in gradient computation

a-l:adv n al:adv ’ 00”
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V)’(‘ Lagv =

ignored

Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. RecSys 2020.



IComputationaI graph

= Exact Solution

\ )\ J

Inner objective Outer objective

Forward computation flow: solid black arrow
Gradient backpropagation flow: dashed red arrow

Revisiting Adversarially Learned Injection Attacks Against Recommender Systems. RecSys 2020.
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= White-box Attacks
- Data Poisoning Attacks on Factorization-Based Collaborative Filtering (NIPS’16)

" Grey-box Attacks

- Revisiting Adversarially Learned Injection Attacks Against Recommender Systems
(RecSys’20)
- Adversarial Attacks on an Oblivious Recommender (RecSys’19)

= Black-box Attacks

« CopyAttack: Attacking Black-box Recommendations via Copying Cross-domain
User Profiles (ICDE’21)

- PoisonRec: An Adaptive Data Poisoning Framework for Attacking Black-box
Recommender Systems (ICDE’20)
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I Challenges

= Challenges in existing attacking methods:
= Less "realistic" user profiles (easily detected)

@ Target items being recommended
U1 V9 'Uj—l ’Uj
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User-item Interactions
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Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.



I Solution

= Cross-domain Information
= Share a lot of items

& o

= Users from these platforms with similar functionalities also share similar

behavior patterns/preferences.
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Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.
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= Challenges in existing attacking methods:
= Less "realistic" user profiles (easily detected)
@* Copy cross-domain users with real profiles from other domains

Source Domain B . _._._Target Domain A
o i | Mz
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! Users in B Domain Sharing Items Users in A Domain New Users : BEST
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Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.



I Challenges

= Challenges in existing attacking methods:

= Less "'realistic" user profiles (easily detected)
-®)- ¢+ Cross-domain Information

= White/Grey-box setting (i.c., model architecture and parameters, and datasets)
—> 1mpossible and unrealistic (privacy and security)

= Black-box setting
@ » Reinforcement Learning (RL) -- Query Feedback (Reward)

22

Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.
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User Profile Crafting
User Profile Selection in Source Domain B in Source Domain_B __Target RecSys in Target Domain A
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\ Copying User Profile
! (Injection Attack) !
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Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.
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° U ser Profile Selection : User Profile Selection in Source Domain B
* Construct hierarchical clustering tree :
* Masking Mechanism - specific target items
* Hierarchical-structure Policy Gradient

al = {aﬁ,l],aﬁ,z], ey aE‘t,d]}

d
p aflst) = | | plscatl- s
- Pg(aﬁ,d] |s¢') - Pg_l(aﬁ,d_l] |s¢') - 'p?(aﬁ’l] |s¢)

Xo, = RNN(UP™H),
pY(-|s¥) = softmax(MLP([q5 & x4, ]|6%))

Time Complexity :  O(|UB|)—0O(d x |[UB|Y/?)

Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.
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User Profile Crafting

B
Pui ={'Z)3—)’U4—)’Z)5*—)v6_)v7}

 User Profile Crafting ----in Source Domain B_____
* Clipping operation to craft the raw user profiles @R,’f

W = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% } ‘g PN-Length
N R

* Sequential patterns (forward/backward) o B
-t )

w = 50% | ; ' : E :

Example: - T :
B _ s = 2 :
P, ={v1 > v % U3 — U4 — Usx — Vg — U7 } Vg — U9 — 10} {Egr«m}m,{H: - W%

Pl(.ls,{) = softmax(MLP([p? @ qﬁ*]w’)) a
B

Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021. R



User Profile Crafting / \
User Profile Selection in Source Domain B in Source Domain_B Target RecSys in Target Domain A
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Attacking Black-box Recommendations via Copying Cross-domain User Profiles, ICDE, 2021.



