
¤ Part 1: Introduction of Retrieval Augmented Large Language Models (RA-

LLMs) (Dr. Wenqi Fan)

¤ Part 2: Architecture of RA-LLMs and Main Modules (Dr. Yujuan Ding)

¤ Part 3: Learning Approach of RA-LLMs (Liangbo Ning)

¡ Part 4: Applications of RA-LLMs (Shijie Wang)

¡ Part 5: Challenges and Future Directions of RA-LLMs (Dr. Wenqi Fan)

Website of this tutorial 
Check out the slides and more information!

69

Tutorial Outline



Part 3: RA-LLM Learning

m Training-free Methods

m Training-based Methods

Ø Independent Learning

Ø Sequential Learning

Ø Joint Learning
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RA-LLM Learning: Training-free

• Retrieval models and language models are both frozen.
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RA-LLM Learning: Training-free

• Prompt Engineering-based Methods

• Retrieval-Guided Token Generation Methods
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RA-LLM Learning: Training-free

Trivedi, Harsh, et al. "Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions." ACL. 2023.

• IRCoT
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RA-LLM Learning: Training-free

Yu, Wenhao, et al. "Generate rather than Retrieve: Large Language Models are Strong Context Generators." International Conference on Learning Representations. 2023.

• GENREAD
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RA-LLM Learning: Training-free

Khandelwal, Urvashi, et al. "Generalization through Memorization: Nearest Neighbor Language Models." International Conference on Learning Representations. 2019.

• !NN-LM
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RA-LLM Learning: Training-free

He, Zhenyu, et al. "REST: Retrieval-Based Speculative Decoding." NAACL. 2024.

• REST
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RA-LLM Learning: Training-free

ü Work with off-the-shelf models

ⅹAll components are fixed and not trained

ⅹMight not achieve optimal learning result of the whole model 
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Part 3: RA-LLM Learning

m Training-free Methods

m Training-based Methods

Ø Independent Learning

Ø Sequential Learning

Ø Joint Learning
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RA-LLM Learning: Independent Training

• Retrieval models and language models are trained independently.

• Independent training of Retriever.

• Independent training of large language models.
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RA-LLM Learning: Independent Training

• Retrieval models and language models are trained independently.

• Independent training of Retriever.

• Independent training of large language models.
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RA-LLM Learning: Independent Training

• Independent training of large language models.

Back-Propagate

"#$#%#&' − )*+,!"(.|0)

T5 ……
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RA-LLM Learning: Independent Training

• Retrieval models and language models are trained independently.

• Independent training of Retriever.

• Independent training of large language models.
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RA-LLM Learning: Independent Training

• Sparse retrieval models: TF-IDF / BM25

Kobe Bryant, a legendary basketball player, 
left an indelible mark on the sport …

Kobe Bryant, a basketball icon and five-time 
NBA champion, captivated fans worldwide …

Text Chunks

Ramos, Juan. "Using TF-IDF to determine word relevance in document queries." Proceedings of the first instructional conference on machine learning. 2003.
Robertson, Stephen, and Hugo Zaragoza. "The probabilistic relevance framework: BM25 and beyond." Foundations and Trends® in Information Retrieval. 2009.

[0, 5. 7, 0, 0.9, 5. 9, … ]

[<. =, 0, 0, 5. >, 0.8, … ]

Sparse Vectors

No training is Needed!
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RA-LLM Learning: Independent Training

• Dense retrieval models: DPR

Karpukhin, Vladimir, et al. "Dense passage retrieval for open-domain question answering." 2020 Conference on Empirical Methods in Natural Language Processing, 2020. 
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RA-LLM Learning: Independent Training

• Dense retrieval models: CoG

Tian Lan, et al. “Copy is All You Need.” In The Eleventh International Conference on Learning Representations, 2022.
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RA-LLM Learning: Independent Training

Tian Lan, et al. “Copy is All You Need.” In The Eleventh International Conference on Learning Representations, 2022.
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RA-LLM Learning: Independent Training

ü Work with off-the-shelf models,  flexible

ü Each part can be improved independently

ⅹLack of integrity between Retrieval and Generation

ⅹRetrieval models are not optimized specified for the tasks/ domains/ generators
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Part 3: RA-LLM Learning

m Training-free Methods

m Training-based Methods

Ø Independent Learning

Ø Sequential Learning

Ø Joint Learning
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RA-LLM Learning: Sequential Training

• One component is first trained independently and then fixed.
• The other component is trained with an objective that depends on the first one.
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RA-LLM Learning: Sequential Training

• Retrieval models is first trained independently and then fixed.
• Language models are trained with an objective that depends on the Retrieval.
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RA-LLM Learning: Sequential Training

• RETRO

Borgeaud et al. 2022. Improving Language Models by Retrieving from Trillions of Tokens
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RA-LLM Learning: Sequential Training

• Language models are first trained independently and then fixed.
• Retrieval models are trained with supervisions from language models.
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RA-LLM Learning: Sequential Training
• REPLUG (Retrieve and Plug)

Shi, Weijia, et al. "REPLUG: Retrieval-Augmented Black-Box Language Models." NAACL. 2024.
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RA-LLM Learning: Sequential Training
• AAR (Augmentation-Adapted Retriever)

Yu, Zichun, et al. "Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In." ACL. 2023.
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RA-LLM Learning: Sequential Training

ü Work with off-the-shelf models

ü Generators can be trained effectively based on the retrieved results

ü Retrievers can be trained to provide useful information to help the generators

ⅹOne component is still fixed and not trained

ⅹMight not achieve optimal learning result of the whole modell
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Part 3: RA-LLM Learning

m Training-free Methods

m Training-based Methods

Ø Independent Learning

Ø Sequential Learning

Ø Joint Learning
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RA-LLM Learning: Joint Training

• Retrieval models is and language models are trained jointly.
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RA-LLM Learning: Joint Training

• Retrieval Index Updating, which could be very expensive!

• Solutions: 

• Asynchronous index updating

• In-batch approximation
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RA-LLM Learning: Joint Training

Objective function:

• REALM

Guu et al. 2020. “REALM: Retrieval-Augmented Language Model Pre-Training”
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RA-LLM Learning: Joint Training

• REALM

Guu et al. 2020. “REALM: Retrieval-Augmented Language Model Pre-Training”
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RA-LLM Learning: Joint Training

• REALM

Guu et al. 2020. “REALM: Retrieval-Augmented Language Model Pre-Training”
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RA-LLM Learning: Joint Training

• REALM – Asynchronous Index Update

Guu et al. 2020. “REALM: Retrieval-Augmented Language Model Pre-Training”
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RA-LLM Learning : Joint Training

• TRIME – In-Batch Approximation

Zhong et al., 2022. “Training Language Models with Memory Augmentation”
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RA-LLM Learning : Joint Training

• TRIME

Zhong et al., 2022. “Training Language Models with Memory Augmentation”
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Local Memory:

Long-term Memory:

External Memory:

Training Objective:



RA-LLM Learning : Joint Training

• TRIME Data Batching Strategy

Use BM25 scores to find similar text 
chunks to provide more training 
signals

Zhong et al., 2022. “Training Language Models with Memory Augmentation”
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¤ Part 1: Introduction of Retrieval Augmented Large Language Models (RA-

LLMs) (Dr. Wenqi Fan)

¤ Part 2: Architecture of RA-LLMs and Main Modules (Dr. Yujuan Ding)

¤ Part 3: Learning Approach of RA-LLMs (Liangbo Ning)

¤ Part 4: Applications of RA-LLMs (Shijie Wang)

¡ Part 5: Challenges and Future Directions of RA-LLMs (Dr. Wenqi Fan)

Website of this tutorial 
Check out the slides and more information!
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PART 4: Application of RA-LLMs

¡ NLP applications

¡ Downstream tasks

¡ Domain-specific applicationsPresenter
Shijie Wang

HK PolyU
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RA-LLM Applications

• Various applications

Chatbots Recommendation AI for Science

...

Ferreira, Diana, et al., 2020. “Recommendation System Using Autoencoders”

https://www.intelli-science.com/p/large-science-models-in-2024-hype



RA-LLM Applications: NLP Applications

Applications

NLP Applications

Downstream Tasks

Domain-specific
Applications
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QA Systems

ChatBots

Fact Verification
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RA-LLM Applications: QA Systems

• QA systems
• Challenges:

• Open-domain QA
• Domain-specific QA

• How to solve?
• Fine-tuning
• Prompting



RA-LLM Applications: QA Systems

• Retrieves for open-domain QA 

Izacard et al., 2021. “Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering”

Retrieves support text passages from an external source of knowledge



RA-LLM Applications: QA Systems

• REALM

Guu et al., 2020. “REALM: Retrieval-Augmented Language Model Pre-Training”



RA-LLM Applications: QA Systems

• RETRO (Retrieval-enhanced transformer)

Borgeaud et al., 2022. “Improving Language Models By Retrieving From Trillions Of Tokens”



RA-LLM Applications: QA Systems

• G-Retriever

He, et al. "G-retriever: Retrieval-augmented generation for textual graph understanding and question answering."

Retrieves from knowledge graph for question-answering
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RA-LLM Applications: Chatbots

• ChatBots

https://www.forbes.com/advisor/in/business/software/what-is-a-chatbot/



RA-LLM Applications: Chatbots

• Knowledge-grounded model

Ghazvininejad et al., 2018. “A Knowledge-Grounded Neural Conversation Model”



RA-LLM Applications: Chatbots

• GATE

Qin et al., 2023. “Well Begun is Half Done: Generator-agnostic Knowledge Pre-Selection for Knowledge-Grounded Dialogue”



RA-LLM Applications: Chatbots

• CEG

Li et al., 2024. “Citation-Enhanced Generation for LLM-based Chatbots”



RA-LLM Applications: Chatbots

• Search-engine-augmented chatbots

Wang et al., 2023. “Search-Engine-augmented Dialogue Response Generation with Cheaply Supervised Query Production”
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RA-LLM Applications: Fact Verification

• Fact verification
Fact Verification is a critical task in verifying the accuracy and reliability of 
information

https://gijn.org/resource/fact-checking-verification/



RA-LLM Applications: Fact Verification

• Fact verification

Lewis et al., 2020. “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”



RA-LLM Applications: Fact Verification

• Fact verification
• Fact verification is usually together with other NLP tasks (such as Q & A)
• ATLAS:

Izacard et al., 2023. “Atlas: Few-shot Learning with Retrieval Augmented Language Models”



RA-LLM Applications: Fact Verification

• Self-RAG

Asai et al., 2023. “Self-rag: Learning To Retrieve, Generate, And Critique Through Self-reflection”



RA-LLM Applications: Downstream Tasks
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RA-LLM Applications: Recommendations

Applications

NLP Applications

Downstream Tasks

Domain-specific
Applications

• Recommendations

Recommendations

Software
Engineering



Recommendation has been widely applied in online services

RA-LLM Applications: Recommendations

• Recommendations

News/Video/Image Recommendation

TikTok's recommendation algorithm
Top 10 Global Breakthrough 

Technologies in 2021



RA-LLM Applications: Recommendations

• LLMs in recommendations



RA-LLM Applications: Recommendations

• Conventional item-based LLM reasoning process

Wu et al., 2024. “CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve Long-tail Recommendation”



RA-LLM Applications: Recommendations

• Collaborative retrieval augmented LLM reasoning process

Wu et al., 2024. “CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve Long-tail Recommendation”



RA-LLM Applications: Recommendations

• Retrieval from the reviews

Lu et al., 2021. “RevCore: Review-augmented Conversational Recommendation”



RA-LLM Applications: Recommendations

• Retrieval from the notes

Zhang et al., 2024. “NoteLLM: A Retrievable Large Language Model for NoteRecommendation”

NoteLLM:



RA-LLM Applications: Software Engineering

Applications

NLP Applications

Downstream Tasks

Domain-specific
Applications

• Software engineering

Recommendations

Software
Engineering



RA-LLM Applications: Software Engineering

• Software engineering:
• Code generation
• Program repair
• Table processing
• ...

Li et al., 2023. “SheetCopilot: Bringing Software Productivity to the Next Level through Large Language Models”



RA-LLM Applications: Software Engineering

• Code generation:

Parvez et al., 2021. “Retrieval Augmented Code Generation and Summarization”



RA-LLM Applications: Software Engineering

• Code generation:

Zhou et al., 2023. “Docprompting: Generating Code by Retrieving the Docs”



RA-LLM Applications: Software Engineering

• Program repair:

Nashid et al., 2023. “Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning”



RA-LLM Applications: Domain-specific Applications

Applications

NLP Applications

Downstream Tasks

Domain-specific
Applications

• Domain-specific applications

AI for Science

Finance



RA-LLM Applications: AI for Science
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RA-LLM Applications: AI for Science

• AI for science
• Molecules
• Protein
• ...

https://www.quantamagazine.org/how-ai-revolutionized-protein-science-but-didnt-end-it-20240626/



RA-LLM Applications: AI for Science

• Molecules discovery
• MolReGPT

Li et al., 2024. “Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective”



RA-LLM Applications: AI for Science

• Drug discovery
• RetMol

Wang et al., 2023. “Retrieval-based Controllable Molecule Generation”



RA-LLM Applications: AI for Science

• Protein Representation Learning

Ma et al., 2023. “Retrieved Sequence Augmentation for Protein Representation Learning”



RA-LLM Applications: Finance

Applications

NLP Applications

Downstream Tasks

Domain-specific
Applications

• Finance

AI for Science

Finance



RA-LLM Applications: Finance

• Finance
• Financial sentiment analysis:

Zhang et al., 2023. “Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language Models”



RA-LLM Applications: Finance

• Finance
• Retrieve from PDF

Lin et al., 2024. “Revolutionizing Retrieval-Augmented Generation with Enhanced PDF Structure Recognition”



RA-LLM Applications: Finance

• Financial analysis

Li et al., 2024. “AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework”



¤ Part 1: Introduction of Retrieval Augmented Large Language Models (RA-

LLMs) (Dr. Wenqi Fan)

¤ Part 2: Architecture of RA-LLMs and Main Modules (Dr. Yujuan Ding)

¤ Part 3: Learning Approach of RA-LLMs (Liangbo Ning)

¤ Part 4: Applications of RA-LLMs (Shijie Wang)

¤ Part 5: Challenges and Future Directions of RA-LLMs (Dr. Wenqi Fan)

Website of this tutorial 
Check out the slides and more information!
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m Trustworthy LLMs/RAG/RA-LLMs

m Multi-Modal RA-LLMs

m Quality of External Knowledge

m Mamba-based RA-LLMs
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Trustworthy LLMs/RAG/RA-LLMs

• RA-LLMs bring benefits to humans, but
v Unreliable output
v Unequal treatment during the decision-making process
v A lack of transparency and explainability 
v Privacy issues
v ……

• Four of the most crucial dimensions:

v Safety and Robustness v Non-discrimination and Fairness

v Privacyv Explainability
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Safety and Robustness

• External knowledge introduces new avenues for adversarial attacks.

Deng, Gelei, et al. "Pandora: Jailbreak gpts by retrieval augmented generation poisoning." arXiv preprint arXiv:2402.08416 (2024).
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Safety and Robustness

q CheatAgent is developed to harness the human-like capabilities of 

LLMs to generate perturbations and mislead the LLM-based RecSys. 

Ning, Liangbo, et al."CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent." KDD (2024).
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Non-Discrimination and Fairness

• Can RAG be utilized to develop more fair LLMs?

Shrestha, Robik, et al. "FairRAG: Fair human generation via fair retrieval augmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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Explainability

• How to explain the generation process of the RA-LLMs?

RA-LLMs

I want to buy 
a phone.

ask output

Why this product?
How did this result 
come about?

Black-box

?
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Privacy

• External databases may contain private information, leading to 

privacy leaking risks.

Zeng, Shenglai, et al. "The good and the bad: Exploring privacy issues in retrieval-augmented generation (rag)." arXiv preprint arXiv:2402.16893 (2024).
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Multi-Modal RA-LLMs

• Various modalities can provide richer contextual information.

Cui, Wanqing, et al. "MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning." arXiv preprint arXiv:2402.13625 (2024).
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Quality of External Knowledge

• The introduction of some texts that deviate from facts might even 

mislead the model’s generation process. 
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Mamba-based RA-LLMs

166

q Transformer-based LLMs face computational efficiency challenges because of the quadratic 
complexity of attention mechanisms. 

“A Survey of Mamba”. https://arxiv.org/pdf/2408.01129, 2024 
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¤ Part 1: Introduction of Retrieval Augmented Large Language Models (RA-

LLMs) (Dr. Wenqi Fan)

¤ Part 2: Architecture of RA-LLMs and Main Modules (Dr. Yujuan Ding)

¤ Part 3: Learning Approach of RA-LLMs (Liangbo Ning)

¤ Part 4: Applications of RA-LLMs (Shijie Wang)

¤ Part 5: Challenges and Future Directions of RA-LLMs (Dr. Wenqi Fan)

Summary



168

A Comprehensive Survey Paper

Survey on KDD’24: https://arxiv.org/pdf/2405.06211
Website: https://advanced-recommender-systems.github.io/RAG-Meets-LLMs/

Survey  paper 
Tutorial

Website (Slides)

https://arxiv.org/pdf/2405.06211
https://advanced-recommender-systems.github.io/RAG-Meets-LLMs/Survey


Feel free to ask questions.

Q & A
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