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PART 4: RecSys Fine-tuning
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Fine-tuning in NLP
q What is Fine-tuning and Why Fine-tuning?

v Gaps between the pre-training tasks and downstream tasks still exist
v Fine-tuning means training pre-trained LLMs on downstream tasks to fit the requirements

 I think I am good enough at
recommendation!

Domain-specific pre-training

B3210, B1731, B8471, B8347, 

What are these
IDs?

 

Oh, that's sequential recommendation!
The answer should be B4453.

Fine-tuning

General Pre-training

Recommendation-
corpus is required

After Fine-Tuning
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Fine-tuning in NLP: pre-train then fine-tune
q Typical “pre-train then fine-tune” strategies

"Recent advances in natural language processing via large pre-trained language models: A survey." ACM Computing Surveys 56.2 (2023): 1-40.

Fine-tune the full PLM Fine-tune the full PLM in 
a custom model

Fine-tune just a small adapter sub-
layer per each Transformer layer
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Fine-tuning the pre-trained language model (PLM)
q This approach fine-tunes some or all the layers of the PLM and then adds one or two 

simple output layers (known as prediction heads).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
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"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

Fine-tuning in NLP: Fine-tuning the PLM 
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Fine-tuning in NLP: Fine-tuning the PLM 

"Incorporating BERT into Neural Machine Translation." International Conference on Learning Representations.

q Customized Models

v Some tasks require significant additional architecture on top of a language model.
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Fine-tuning in NLP: 
Parameter Efficient Fine-tuning (PEFT) 

"Recent advances in natural language processing via large pre-trained language models: A survey." ACM Computing Surveys 56.2 (2023): 1-40.

q What is Parameter Efficient Fine-tuning (PEFT)?

v As LLMs scale up to billion weights, consumable GPUs like 3090 and 4090 gradually fail to contain all 

the weights in their memory

v Parameter Efficient Fine-tuning aims to save GPU memory and boost training

q Why PEFT?

v Making fine-tuning feasible for consumable GPUs

v With major parameters fixed, it might relieve the problem of catastrophic forgetting
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Fine-tuning in NLP: PEFT
q Fine-tuning a separate, small network that is tightly coupled with the PLM. 
q Selecting only a small number of the PLM’s weights to fine-tune or keep.
q Introduce additional low-rank trainable parameters, which are integrated with the 

original model.

"Parameter-efficient fine-tuning for large models: A comprehensive survey." arXiv preprint arXiv:2403.14608 (2024).
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Fine-tuning in NLP: Prefix-tuning
q Freezes the Transformer parameters and only optimizes the prefix (the red prefix 

blocks)

"Prefix-Tuning: Optimizing Continuous Prompts for Generation." ACL. 2021.
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Fine-tuning in NLP: PaFi
q Select model parameters with the smallest absolute magnitude as trainable

"Parameter-Efficient Fine-Tuning without Introducing New Latency." ACL. 2023.
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Fine-tuning in NLP: 
Low-Rank Adaptation of LLMs (LoRA)

q Fine-tuning a 7B model needs 7,000,000,000∗8/1024^3 ≅52𝐺𝐵 GPU memory
q LoRA only fine-tunes the feed-forward networks (FFNs)

v Making it possible for consumable GPUs to train 7B and even 13B LLMs

"Lora: Low-rank adaptation of large language models." arXiv preprint (2021).
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Fine-tuning in NLP: UNIPELT
q Integrate multiple PELT methods and controls them via a gating mechanism

"UNIPELT: A Unified Framework for Parameter-Efficient Language Model Tuning." ACL, 2022.
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Fine-tuning with Reinforcement Learning

Reinforcement Learning based on 
Human Feedbacks (RLHF)

Proximal Policy Optimization (PPO)

Direct Preference Optimization (DPO)
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Fine-tuning with Reinforcement Learning: RLHF

"Deep reinforcement learning from human preferences." Advances in neural information processing systems (2017).
18



Fine-tuning with Reinforcement Learning

Reinforcement Learning based on 
Human Feedbacks (RLHF)

Proximal Policy Optimization 
(PPO)

Direct Preference Optimization 
(DPO)
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Fine-tuning with Reinforcement Learning: PPO

https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO
20



Fine-tuning with Reinforcement Learning: PPO

https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO

22



https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO

25



https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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https://www.coursera.org/lecture/generative-ai-with-llms/optional-video-proximal-policy-optimization-1iZJO

Fine-tuning with Reinforcement Learning: PPO
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Fine-tuning with Reinforcement Learning

Reinforcement Learning based on 
Human Feedbacks (RLHF)

Proximal Policy Optimization (PPO)

Direct Preference Optimization (DPO)
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Fine-tuning with Reinforcement Learning: DPO

"Direct preference optimization: Your language model is secretly a reward model." arXiv preprint (2023).
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TokenRec
q Fine-tuning LLM-based RecSys with SFT

"TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation." arXiv preprint arXiv:2406.10450 (2024).
34



GIRL
q Multi-steps of Fine-tuning with SFT and RL

"Generative job recommendations with large language model." arXiv preprint (2023).
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GIRL
q Multi-steps of Fine-tuning with SFT and RL

v Train a generator with the casual language model pre-training task

"Generative job recommendations with large language model." arXiv preprint (2023).
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GIRL
q Multi-steps of Fine-tuning with SFT and RL

v Train a reward model 𝑼 that can predict the matching score between a CV-JD pair

"Generative job recommendations with large language model." arXiv preprint (2023).
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GIRL
q Multi-steps of Fine-tuning with SFT and RL

v Improve the alignment between the generator and the recruiter feedback acquired by the 
reward model through reinforcement learning

"Generative job recommendations with large language model." arXiv preprint (2023).
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TransRec
q Fine-tuning LLM-based RecSys with Cross-Modal Data

"Transrec: Learning transferable recommendation from mixture-of-modality feedback." arXiv preprint (2022).
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M6-Rec
q Option Adapter Fine-tunes LLMs

"M6-rec: Generative pretrained language models are open-ended recommender systems." arXiv preprint (2022).
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TALLRec
q LoRA Fine-tune LLMs

"Tallrec: An effective and efficient tuning framework to align large language model with recommendation." RecSys (2023).
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LLM-TRSR
q LoRA Fine-tune LLMs

"Harnessing large language models for text-rich sequential recommendation." Proceedings of the ACM on Web Conference (2024)

Hierarchical Summarization Paradigm

Recurrent Summarization Paradigm
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GLRec
q LoRA Fine-tune LLMs

"Exploring large language model for graph data understanding in online job recommendations." Proceedings of the AAAI Conference on Artificial Intelligence (2024)
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¤ Prompting

¡ In-context Learning (ICL)

¡ Chain-of-Thought (CoT)

¡ Prompt Tuning

¡ Hard prompt tuning

¡ Soft prompt tuning

¡ Instruction Tuning

¡ Full-model tuning with prompt

¡ Parameter-efficient model tuning with prompt

PART 5: RecSys Prompting

Presenter
Shijie WANG

HK PolyU
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Brief Ideas of Prompt
q An intuitive prompt design for ChatGPT

https://blog.cloudhq.net/how-to-write-chatgpt-prompts-for-email/
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What & Why Prompt
q A text template that can be applied to the input of LLMs

Why prompting than pre-
training or fine-tuning?

KPre-training & Fine-tuning 
v Retraining LLMs for downstream transfer requires large task-specific datasets and costly parameter 

updates.

J Prompting 
v Prompt makes it possible for downstream tasks to take the same format as the pre-training 

objectives during the inference stage, requiring no new parameters.
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What & Why Prompt
q A case comparison of pre-training, fine-tuning, and prompting

"Making pre-trained language models better few-shot learners." ACL (2021).
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Prompting
q Keep LLMs frozen and adapt LLMs to downstream tasks via task-specific prompts

v Prompting designs a text template called prompt that can be applied to the input of LLMs.

“The Power of Scale for Parameter-Efficient Prompt Tuning” EMNLP (2021).

e.g., “Will the user __ buy item __?”c
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"Language models are few-shot learners." NeurIPS (2020)

In-context Learning (ICL)
q Elicits the in-context ability of LLMs for learning (new or unseen) downstream tasks 

from context during the inference stage.

v Task Descriptions: natural language instruction of task.
v Prompt: natural language template of task.
v Examples: input-output demonstrations of task.
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Insights on ICL in RecSys

Teach LLMs to Act as RecSys

Bridge Traditional RecSys and LLMs

Act as Agent & Use External Tools
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Teach LLMs to Act as RecSys
q Strategies for prompt construction tailored different recommendation tasks

v ICL template: tasks description, prompt, demonstrations
v Role injection: e.g., “You are a book rating expert.”
v Format indication: e.g., “The output format should be …”

Ex
am

pl
e 

Te
m

pl
at

e

W
ork Flow

"Is ChatGPT a good recommender? a preliminary study." CIKM (2023).
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Teach LLMs to Act as RecSys
q Task-specific prompt construction via ICL

v Black: recommendation task descriptions
v Grey: current input
v Red: format requirements
v Blue: input-output demonstrations

"Is ChatGPT a good recommender? a preliminary study." CIKM (2023).
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Teach LLMs to Act as RecSys
q BookGPT

"BookGPT: A General Framework for Book Recommendation Empowered by Large Language Model." arXiv preprint arXiv:2305.15673 (2023).
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Teach LLMs to Act as RecSys
q LLM-Rec

"Llm-rec: Personalized recommendation via prompting large language models." arXiv preprint arXiv:2307.15780 (2023).
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Insights on ICL in RecSys

Teach LLMs to Act as RecSys

Bridge Traditional RecSys and LLMs

Act as Agent & Use External Tools
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Bridge Traditional RecSys and LLMs

"A Survey on Large Language Models for Recommendation." arXiv preprint arXiv:2305.19860 (2023).

q Integrate LLMs as feature extractor of users and items into RecSys
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Bridge Traditional RecSys and LLMs

"Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models." arXiv preprint arXiv:2306.10933 (2023).

q KAR

v Prompt LLMs to obtain open-world knowledge beyond original recommendation dataset.
v Integrate LLM-based open-world knowledge into domain knowledge of RecSys.
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Bridge Traditional RecSys and LLMs

"Chat-rec: Towards interactive and explainable llms-augmented recommender system." arXiv preprint arXiv:2303.14524 (2023).

q Chat-Rec does it vice versa

v RecSys generate a large set of candidate items.
v LLMs refine candidate set based on user dialogue and other side information. 
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Insights on ICL in RecSys

Teach LLMs to Act as RecSys

Bridge Traditional RecSys and LLMs

Act as Agent & Use External Tools
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Act as Agent & Use External Tools

"RecAgent: A Novel Simulation Paradigm for Recommender Systems." arXiv preprint arXiv:2306.02552 (2023).

q RecAgent

v LLMs act as agents to simulate user behaviors: RecSys, chatting, posting.
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Act as Agent & Use External Tools

"On Generative Agents in Recommendation." arXiv preprint arXiv:2310.10108 (2023).

q Agent4Rec
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Act as Agent & Use External Tools

“MACRec: a Multi-Agent Collaboration Framework for Recommendation." arXiv preprint arXiv:2402.15235 (2024).

q MACRec
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Act as Agent & Use External Tools

"Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT." arXiv preprint arXiv:2304.11116 (2023).

q Graph-ToolFormer
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Act as Agent & Use External Tools

"Recmind: Large language model powered agent for recommendation." arXiv preprint arXiv:2308.14296 (2023).

q RecMind

v Perform API calls of specific tools tailored to tasks.
v Task planning to break recommendation tasks into manageable steps.
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Chain-of-Thought (CoT) Prompting

"Chain-of-thought prompting elicits reasoning in large language models." NeurIPS (2022).

q Annotates intermediate reasoning steps into prompt to enhance the reasoning 
ability of LLMs
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Beyond “Chain”-of-Thought

"Recmind: Large language model powered agent for recommendation." arXiv preprint arXiv:2308.14296 (2023).

q RecMind

v Tree-of-Thoughts (ToT, 2023): generate & select multiple candidates for next step, but eventually 
return single reasoning path similar to CoT.

v Self-Inspiring (SI, proposed): further explore alternative reasoning path in parallel to other paths.  
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Potential of Tree-of-Thought

"Tree of Thoughts: Deliberate Problem Solving with Large Language Models." arXiv preprint arXiv:2305.1060 (2023).

q ToT

v ToT actively maintains a tree of thoughts.
v LLM-enpowerd RecSys may also benefit from TOT.
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Potential of Graph-of-Thought

"Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Large Language Models." arXiv preprint arXiv:2305.16582 (2023).

q GoT

v Fusion of thought graph representation into text representation.
v RecSys can be considered as a special case of link prediction problems in graph learning.
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Prompting
q Prompt shapes

GPT

Prefix Prompt

For tasks regarding generation, or tasks being solved 
using a standard auto-regressive LM, prefix prompts
tend to be more conducive, as they mesh well with the 
left-to-right nature of the model. 

BERT

Cloze Prompt

For tasks that are solved using masked LMs, cloze 
prompts are a good fit, as they very closely match the 
form of the pre-training task.
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Prompt Tuning
q Only involves minimal parameter updates of the tunable prompt and the input 

layer of LLMs

v Prompt tuning adds new prompt tokens to LLM and optimizes the prompt.

0.8 0.2 0.4 0.7 0.5 0.6 0.2 0.9

e.g., continuous vector

“The Power of Scale for Parameter-Efficient Prompt Tuning” EMNLP (2021).
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Hard vs. Soft Prompt Tuning
q Taxonomy

v “Prompts can be discrete templates or soft parameters that encourage the model to predict the 
desired output.”

v “ICL can be regarded as a subclass of prompt tuning where the demonstration is part of the prompt.”

"A survey for in-context learning." arXiv preprint arXiv:2301.00234 (2022).
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Hard vs. Soft Prompt Tuning
q Hard prompt tuning - learn tokens of discrete text templates

v Convenient and effective to refine natural language prompts but faces discrete optimization
challenges, like laborious trial and error to find suitable prompts.

q Soft prompt tuning - learn tokens of continuous parameters

v Feasible for tuning on continuous space but in a cost of explainability, since soft prompts 
written in continuous vectors are not interpretable to humans.

Which to choose? 
Hard or Soft?
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Prompt Tuning in RecSys
q PEPLER

v Hard prompt tuning: utilizes item features (e.g., titles) as a discrete prompt for explanation 
generation.

v Soft prompt tuning : treats user and item embeddings as continuous prompt for explanation 
generation.

"Personalized prompt learning for explainable recommendation." ACM Transactions on Information Systems (2023).

H
ar

d Soft
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Soft Prompt Tuning in RecSys
q UP5

v Soft prompts can also be learned based on task-specific datasets.

"Up5: Unbiased foundation model for fairness-aware recommendation." EACL (2024).
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Bridge Hard & Soft Prompt Tuning
q POD

v Discrete hard prompt suffers from processing long text of user and item IDs.
v Distill the discrete prompt to a set of soft prompt so as to bridge IDs and texts.

“Prompt distillation for efficient llm-based recommendation.“ CIKM (2023).
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Instruction Tuning
q To enhanced the zero-shot performance of LLMs on unseen tasks by accurately 

following new task instructions

"Finetuned language models are zero-shot learners." ICLR (2022)

v Instruction tuning is a combination of both prompting and fine-tuning paradigms.
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Stages of Instruction Tuning

Instruction Generation   (≈ Prompting)

Model Tuning with Prompt (≈ Fine-tuning)
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Stage 1: Instruction Generation
q A format of instruction-based prompt in natural language

"Finetuned language models are zero-shot learners." ICLR (2022)

v Task-oriented input: task descriptions based on task-specific dataset.
v Desired target: corresponding output based on task-specific dataset.
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Instruction Generation for RecSys
q InstructRec

"Recommendation as instruction following: A large language model empowered recommendation approach." arXiv preprint arXiv:2305.07001 (2023).

v Pointwise recommendation (𝑻𝟎)
v Pairwise recommendation (𝑻𝟏)
v Matching (𝑻𝟐)
v Re-ranking (𝑻𝟑)
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Stages of Instruction Tuning

Instruction Generation   (≈ Prompting)

Model Tuning with Prompt (≈ Fine-tuning)
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Stage 2: Model Tuning with Prompt 
q Recall the fine-tuning paradigm

v Full-model tuning with instruction-based prompt
v Parameter-efficient model tuning with instruction-based prompt

"Lora: Low-rank adaptation of large language models." ICLR (2022).
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Instruction Tuning in RecSys
q TALLRec

v Instructions generation template of recommendation tasks.
v Model fine-tuning using LoRA with instruction input-output pairs.

"Tallrec: An effective and efficient tuning framework to align large language model with recommendation." RecSys (2023).
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Hallucination Mitigation
q Outputs are plausible-sounding
q But incorrect or not referable in the inputs

“Siren‘s Song in the AI Ocean: A Survey on Hallucination in Large Language Models.” ArXiv (2023)
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Hallucination Mitigation
q Retrieval-Augmented Generation: to address out-of-score knowledge and 

hallucination issue

“A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models,’’ KDD 2024.
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Trustworthy LLMs for RecSys
q LLMs for RecSys bring benefits to humans, but

v Unreliable recommendations
v Unequal treatment of various consumers or producers
v A lack of transparency and explainability
v Privacy issues
v ……

q Four of the most crucial dimensions

Safety and Robustness

Non-discrimination and FairnessPrivacy

Explainability

“Trustworthy ai: A computational perspective.” ACM Transactions on Intelligent Systems and Technology (2022)
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Safety and Robustness
q Perturbations (i.e., minor changes in the input) can compromise the safety and 

robustness of their uses in safety-critical applications
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Safety and Robustness
q CheatAgent is developed to harness the human-like capabilities of LLMs to generate 

perturbations and mislead the LLM-based RecSys. 

"CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent." KDD (2024).
96



Self-Denoise
q Denoising the corrupted inputs with LLMs in a self-denoising manner

“Advancing the Robustness of Large Language Models through Self-Denoised Smoothing.” NAACL 2024. arXiv preprint arXiv:2404.12274.
97



Non-discrimination and Fairness
q LLMs often inadvertently learn and perpetuate biases and stereotypes in the human 

data

"Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation." RecSys (2023).
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Explainability
q Certain companies and organizations choose not to open-source their advanced LLMs, 

such as ChatGPT
q The architectures and parameters are not publicly available

LLM

I want to buy 
a phone.

ask output

Why this product?
How did this result 
come about?

blackbox

?
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Prompt:
Someone bought clothes, 
a washing machine, and 
hangers…… Who is this 
person?

Privacy
q Users’ sensitive information (e.g., email and gender) contained in data.
q If not properly protected, this data could be exploited.

Name        Tim
Age    18
Gender Male

…               …

ask

training

recommendation

attack Response:
He is Tim. He is 
18 years old …

get sensitive information

LLM

output
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Vertical Domain-Specific LLM4Rec
q Users can focus on content that is directly aligned with their work or personalized 

preferences.
q The requirement for vast amounts of domain-specific data to train these models poses 

significant challenges in data collection and annotation.

Health Care

Finance

Law
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Amazon-M2
q The Amazon Multilingual Multi-locale Shopping Session Dataset
q Multilingual dataset consisting of millions of user sessions from six different locales

"Amazon-m2: A multilingual multi-locale shopping session dataset for recommendation and text generation." NeurIPS (2023).
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Users and Items Indexing
q LLMs may not perform well when dealing with long texts in RecSys
q User-item interactions (e.g., click, like, and subscription) with unique identities (i.e., 

discrete IDs) in recommender systems contain rich collaborative knowledge

“TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation”, arXiv,  2024
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• Vector Quantization: Acquire discrete tokens for 
representing users and items.

• K-way Encoder with Masking Mechanism: Enhance the 
robustness and generalizability of ID tokenization (i.e., ID 
indexing).

TokenRec
q Quantilizing GNN embeddings into discrete tokens, enabling the seamless integration 

of high-order collaborative knowledge into LLM-empowered Recommender Systems.

“TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation”, arXiv,  2024
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TokenRec
q Quantilizing GNN embeddings into discrete tokens, enabling the seamless integration 

of high-order collaborative knowledge into LLM-empowered Recommender Systems.

“TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation”, arXiv,  2024
105



TokenRec

“TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation”, arXiv,  2024
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Multimodal LLM4Rec
q Large vision-language models (LVLMs) offers the 

potential with their proficient understanding of 
static images and textual dynamics.

q challenges

“Rec-GPT4V: Multimodal Recommendation with Large Vision-Language Models”. arXiv, 2024 

v Lacking user preference knowledge
v Noisy, and redundant multi-modal information for recommendation
v ……
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Mamba-based Rec
q Transformer-based RecSys face computational efficiency challenges because of the 

quadratic complexity of attention mechanisms. 
q Several Mamba-based models have been applied to analyze long-term user behavior 

for personalized recommendations. 

“A Survey of Mamba”. arXiv, 2024 
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¤ Part 1: Introduction of RecSys in the era of LLMs (Dr. Wenqi Fan)

¤ Part 2: Preliminaries of RecSys and LLMs (Dr. Yujuan Ding)

¤ Part 3: Pre-training paradigms for adopting LLMs to RecSys (Dr. Yujuan Ding)

¤ Part 4: Fine-tuning paradigms for adopting LLMs to RecSys (Liangbo Ning)

¤ Part 5: Prompting paradigms for adopting LLMs to RecSys (Shijie Wang)

¤ Part 6: Future directions of LLM-empowered RecSys (Dr. Wenqi Fan)

Summary

Website of this tutorial 
Check out the slides and more information!
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A Comprehensive Survey Paper

https://arxiv.org/abs/2307.02046

Tutorial website: https://advanced-recommender-systems.github.io/LLM4Rec-IJCAI/

Survey paper 
on TKDE

Tutorial
Website (Slides)
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https://arxiv.org/abs/2307.02046
https://advanced-recommender-systems.github.io/llms_rec_tutorial/


Q&A

Feel free to ask questions.
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