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Recommender Systems

Recommender 
Systems 

Information overloadAge of Information Explosion 

Recommend item X to user

Items can be Products, News, Movies, Videos, 
Friends, etc. 



Recommender Systems

A B C

Recommendation has been widely applied in online services:
- E-commerce, Content Sharing, Social Networking ...  

Product Recommendation



Recommender Systems

Recommendation has been widely applied in online services:
- E-commerce, Content Sharing, Social Networking ...  

News/Video/Image Recommendation



Recommender Systems

Recommendation has been widely applied in online services:
- E-commerce, Content Sharing, Social Networking ...  

Friend Recommendation



Problem Formulation

Historical user-item interactions or 
additional side information (e.g., 
social relations, item’s knowledge, etc.) 

INPUT
Predict how likely a user would 
interact with a target Item (e.g., 
click, view, or purchase)

OUTPUT

Item set

User set social relations, age, 
gender, occupation, etc.

year, genre, actor,
reviews, etc.

Side information

Side information
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Recommender Systems

• Collaborative Filtering (CF) is the most well-known technique for recommendation.
- Similar users (with respect to their historical interactions) have similar preferences.
- Modelling users’ preference on items based on their past interactions (e.g., ratings and clicks).

• Learning representations of users and items is the key of CF.
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Task: predicting missing movie ratings in Netflix.
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Deep Learning is Changing Our Lives



Deep Recommender Architecture

Input



Deep Recommender Architecture

Embedding Components

Interaction Components

System Design



Deep Recommender Architecture

Pooling, convolution, and the 
number of layers, inner product, 
outer product, convolution, etc. 

High/low-frequency features 
embedding sizes 

Embedding Components

Interaction Components

hardware infrastructure, 
data pipeline,  information 
transfer, implementation, 
deployment, optimization,  
evaluation, etc.  

System Design



Deep Recommender Architecture

Ø Manually designed architecture:  
• extensive expertise 
• substantial engineering labor and 

time cost 
• human bias and error 

ü Advantages
• Feature representations of users and 

items
• Non-linear relationships between 

users and items



AutoML for Deep Recommender Systems (DRS) 
• Deep architectures are designed by the machine automatically
• Advantages

üLess expert knowledge
üSaving time and efforts
üDifferent data ->different architectures

Image: Huan Zhao 



Automated Machine Learning for Recommendations

• Agenda
ØIntroduction to Deep Recommender System (Wenqi Fan)
ØPreliminary of AutoML (Xiangyu Zhao)
ØDRS Embedding Components (Bo Chen)
ØDRS Interaction Components (Bo Chen)
ØDRS Comprehensive Search & System (Yejing Wang)
ØConclusion & Future Direction (Xiangyu Zhao)
ØQ&A

Automated Machine Learning for Deep Recommender Systems: A Survey. 
arXiv:2204.01390

Tutorial Website (Slides): https://advanced-recommender-systems.github.io/AutoML-Recommendations/
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Success of Machine Learning

M. Lindauer
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Machine Learning Pipeline



Preprocessing?
ReductionPreprocessing

Standardization

Feature Selection

Outlier Removal

Missing Feature  
Imputation

Embeddings

Feature 
Reduction

...

PCA

Kernel PCA

ICA

LDA

NMF

Truncated SVD

...

Hyperparameters

#components

Kernel

degree

coeff

alpha

solver

...

→ We might want more than 1 data preprocessor!

18M. Lindauer



Complexity of the Preprocessing

...

Area

Hyperparameters  
Technique

Preprocessing
● Naive Assumptions:

only 3 decisions at each level
● Possible options: 3 x 3 x 3 = 27

● More realistic assumption:
at least 10 decisions at leach level

● Possible options: 10 x 10 x 10 = 1000

● Choose 3 preprocessors instead of 1
→ 1000 x 1000 x 1000 =

1 000 000 000

● Still naive!
→ Hyperparameters are often 
continuous and not discrete
→ infinite amount of settings!



From Manual ML to Automated ML



Design Decisions by AutoML

Algorithms Pre-
processing

Architecture  
Design

Hyper-
parameters

...



Neural Architecture Search (NAS)

• Find neural architecture A such that deep learning works best for given data
• Measured by validation error of architectureAwith trained weights

• Famously tackled by
reinforcement learning [Zoph & Le, ICLR 2017]
• 12.800 architectures trained fully
• 800 GPUs for 2 weeks (about $60.000 USD)

https://openreview.net/pdf?id=r1Ue8Hcxg


Major Components

Search 
Algorithm

Evaluation  
Method

Search  
Space

Update parameters

• Search Space:
• A set of operations (e.g. convolution, fully-

connected, pooling) 
• how operations can be connected to form 

valid network architectures



Major Components

• Search Strategy
• Sampling a population of network 

architecture candidates (child models)
• Rewards: child model performance metrics

(e.g. high accuracy, low latency)

• Algorithms 
• Random Search
• Reinforcement Learning 
• Gradient descent 
• Evolutionary Algorithms 

Search 
Strategy

Evaluation  
Method

Search  
Space

Update parameters



Major Components

• Evaluation Strategy
• We need to estimate or predict the 

performance of child models 
• In order to obtain feedback for the search 

algorithm to learn

• Methods
• Training from Scratch 
• Proxy Task Performance 
• Parameter Sharing 
• Prediction-Based

Search 
Algorithm

Evaluation 
Strategy

Search  
Space

Update parameters



NAS with Reinforcement Learning

• NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
• State-of-the-art results for CIFAR-10, Penn Treebank
• Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained



NAS with Reinforcement Learning

[Zoph & Le, ICLR 2017]

• Architecture of neural network represented as string  e.g., [“filter height: 5”, “filter width: 
3”, “# of filters: 24”]

• Controller (RNN) generates string that represents architecture
Softmax classifier

Embedding



Training with REINFORCE

Accuracy of architecture on 
held-out dataset

Architecture predicted by the controller RNN 
viewed as a sequence of actions

Parameters of Controller RNN



NAS as Hyperparameter Optimization

[Zoph & Le, ICLR 2017]

• Architecture of neural network represented as string  e.g., [“filter height: 5”, “filter width: 
3”, “# of filters: 24”]

• We can simply treat these as categorical parameters
• E.g., 25 cat. parameters for each of the 2 cells in [Zoph et al, CVPR 2018]



NAS with Evolution

• Neuroevolution
(already since the 1990s [Angeline et al., 1994; Stanley and Miikkulainen, 2002])

• Mutation steps, such as adding, changing or removing a layer
[Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]



Huge Compute of Blackbox Methods

Going to 
cell search 
space

[Wistuba et al., preprint 2019]

Dataset:
CIFAR-10

https://arxiv.org/pdf/1905.01392.pdf


Overview of NAS Speedup Techniques

• Weight Inheritance & Network Morphisms
• Local changes in architecture, followed by fine-tuning steps
• [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019] 

• Weight Sharing & One-Shot Models
• ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups

• Meta-Learning
• Learning across datasets
• To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
• Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al, 

2020]

• Multi-Fidelity Optimization
• Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
• [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]



Network Morphisms

• Network morphisms [Chen et al., 2016; Wei et al., 2016]
• Change the network structure, but not the modelled function  (i.e., for every input, 

the network yields the same output
• as before applying the network morphism)

• Can use this in NAS algorithms as operations to generate new networks
• Avoids costly training from scratch



Overview of NAS Speedup Techniques

• Weight Inheritance & Network Morphisms
• Local changes in architecture, followed by fine-tuning steps
• [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019] 

• Weight Sharing & One-Shot Models
• ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups

• Meta-Learning
• Learning across datasets
• To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
• Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al, 

2020]

• Multi-Fidelity Optimization
• Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
• [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]



DARTS: Differentiable Architecture Search
[Liu et al at ICLR 2019]

Candidate operations



DARTS: Differentiable Architecture Search

• Relax the discrete NAS problem (a->b)
– One-shot model with continuous architecture weight α for each operator

– Mixed operator:

• Solve a bi-level optimization problem (c)

• In the end, discretize to obtain a single architecture (d)

[Liu et al at ICLR 2019]
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Background

• The Embedding layer is used to map the high-
dimensional features into a low-dimensional latent
space.

• The cornerstone of the DRS, as the number of
parameters in DRS is concentrated in the embedding
table.

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅!×#



Background

1. Single Embedding Search —— search for each feature value
2. Group Embedding Search —— search for a group of feature values

To improve the prediction accuracy, save storage space and reduce model size, AutoML-
based solutions are proposed for the learning of feature embedding.
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Single Embedding Search

1. Single Embedding Search —— search for each feature value
2. Group Embedding Search —— search for a group of feature values

To improve the prediction accuracy, save storage space and reduce model size, AutoML-based 
solutions are proposed for the learning of feature embedding.

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅!×#



Single Embedding Search-AMTL
• Search space: 𝑑! (𝑑 is the embedding size and 𝑉 is the vocabulary size)

• Twins-based architecture to avoid the unbalanced parameters update problem due to different
frequencies.

• The twins-based architecture acts as a frequency-aware policy network to search the optimal
dimension for each feature value à relaxed to a continuous space by temperature softmax.

Learning effective and efficient embedding via an adaptively-masked twins-based layer. CIKM 2021. 



Single Embedding Search-PEP
• Pruning-based Solution by enforcing column-wise sparsity on the embedding table with L0

normalization.
• Search Space: 2!" (𝑑 is the embedding size and 𝑉 is the vocabulary size)

dense sparse

𝑔 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

Soft threshold re-parameterization：

NP-hard

PEP: Learnable Embedding Sizes for Recommender Systems. ICLR 2021.



Single Embedding Search
• The search space of PEP and AMTL is highly related with the embedding size 𝑑. 
• To reduce the search space, AutoEmb and ESPAN divide the embedding dimension into several 

column-wise sub-dimensions. 

Sub-dimension1 Sub-dimension2Solution 1:
column-wise sub-dimensions

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅!×#



Single Embedding Search-AutoEmb & ESPAN

• Reduce the search space by dividing the embedding dimension into several candidate sub-
dimensions

• Embedding dimension often determines the capacity to encode information.
• Dynamically search the embedding sizes for different users and items

• Optimal recommendation quality all the time
• More efficient in memory
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Transform

ESAPN: Automated Embedding Size Search in Deep Recommender Systems. SIGIR 2020.

AutoEmb & ESPAN



Single Embedding Search-AutoEmb
• Search Space: From 𝑑! to a! (𝑑 is the embedding size and 𝑉 is the vocabulary size, and 𝑎 is the number of 

sub-dimensions for each feature)

• Two controller networks to decide the embedding sizes for users and items via end-to-end 
differentiable soft selection.

• Sum over the candidate subdimensions with learnable weights. (Soft Selection)

Controller networkAutoEmb

AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations. ICDM 2021.



Single Embedding Search-ESPAN
• Two Components

• Deep recommendation model
• Embedding Size Adjustment Policy Network (ESAPN) - RL (Hard Selection)



Group Embedding Search

1. Single Embedding Search —— search for each feature value
2. Group Embedding Search —— search for a group of feature values

To improve the prediction accuracy, save storage space and reduce model size, AutoML-based 
solutions are proposed for the learning of feature embedding.

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅!×#



Group Embedding Search
• AutoEmb and ESAPN shrink the search space by dividing the embedding dimension into

candidate column-wise sub-dimensions.
• Group the feature values of a field based on some indicators (e.g., frequencies) and assign a

row-wise group embedding dimension for all the values within the group.

Solution 2:
row-wise group embedding dimension 

Embedding Table

Number of Feature Values Embedding Size

E ∈ 𝑅!×#



Group Embedding Search-AutoDim

• Pre-defines several candidate sub-dimensions like
AutoEmb.

• Setting the number of groups b = 1 and searching a
global embedding dimension for all the feature
values of the field.

• Search Space: From 𝑎! to 𝑎# (where 𝑑 is the embedding
size and 𝑉 is the vocabulary size, and 𝑎 is the number of sub-
dimensions for each feature, 𝑚 is the number of feature fields)

Goal:
Selecting embedding dimensions to different feature fields automatically in a data-driven manner.

AutoDim: Field-aware Embedding Dimension Search in Recommender Systems. WWW 2021.



Group Embedding Search-AutoDim

(a)	Dimensionality	Search (b)	Parameter	Re-training

Embedding
Lookup

Deriving
Discrete

Architectures

00 1

Field	1 Field	m Field	M

01 0 10 0

Weights

Transforms
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Embedding
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Transforms

Two-stage framework

AutoDim searches dimensions for feature fields in a soft and continuous fashion via Gumbel 
Softmax,  reducing to a smaller serach space: 5 candiate for each feature field.
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Group Embedding Search-AutoDim
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Group Embedding Search-AutoDim

(a)	Dimensionality	Search (b)	Parameter	Re-training
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Group Embedding Search-DNIS

• Split the features into multi-groups based on the
feature frequencies or clustering.

• Search space: from 2!$ into 2%$ (where 𝑏 is the
number of groups)

• Search for mixed feature embedding dimensions in
a more flexible space through continuous
relaxation and differentiable optimization.

DNIS: Differentiable Neural Input Search for Recommender Systems. In Arxiv.

Search stage:

Derive stage:



Group Embedding Search-NIS

• Input component assigns embedding vectors to each item of these discrete features,
which dominate both the size and the inductive bias of the model.

• The vocabulary and embedding sizes for discrete features are often selected heuristically.

Head Feature
• More data, more information 
• Needing larger embedding size 

Tail Feature
• Less data, less information
• Small embedding size is enough

NIS: Neural Input Search for Large Scale Recommendation Models. KDD 2020.

Solution 3:
column-wise sub-dimensions
row-wise group embedding dimension 



Group Embedding Search-NIS

RL-based AutoML approach
• Main model is the deep recommendation model
• Controller learns to sample embedding dimensions

that generate higher reward.
• Reward:

R = RQ − λ ∗ CM

Embedding Blocks: discretizing an embedding matrix of size v × d into S × T sub-matrices

Head items

Tail items

[(3M, 192), (7M, 64)](7M, 192)

Single-size Embedding (SE) Multi-size Embedding (ME)



Numerical Embedding-AutoDis

1. Category 1: No Embedding

2. Category 2: Field Embedding

• Low capacity: difficult to capture informative knowledge of numerical fields.
• Poor compatibility: difficult to adapt to some models (e.g., FM).

• Low capacity: single shared field-specific embedding.

3. Category 3: Discretization
• TPP (Two-Phase Problem)
• SBD (Similar value But Dis-similar embedding)
• DBS (Dis-similar value But Same embedding)

Existing methods for numerical feature representation have some limitations:

AutoDis: An Embedding Learning Framework for Numerical Features in CTR Prediction. KDD 2021.



Numerical Embedding-AutoDis

AutoDis is a numerical features embedding learning framework with high model capacity, end-
to-end training and unique representation properties preserved.

Meta-embeddings

Automatic Discretization

Aggregation Function



Model Feature Field Search Space Search Strategy

Single 
Embedding 

Search

AMTL Categorical 𝑑! Gradient
PEP Categorical 2!" Regularization

AutoEmb Categorical a! Gradient
ESPAN Categorical a! Reinforcement Learning

Group 
Embedding 

Search

AutoDim Categorical 𝑎# Gradient
DNIS Categorical 2$% Gradient
NIS Categorical 𝑏& Reinforcement Learning

- AutoDis Numerical 2'# Gradient

Summarize DRS Embedding

* 𝑑 is the embedding size, 𝑉 is the vocabulary size, 𝑚 is the number of feature fields, 𝑎 is the number of sub-dimensions, 
𝑏 is the number of groups, 𝑘 is the number of meta-embeddings. (a < d, b<<V)
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Background

Effectively modelling feature interactions is important.

§ Both low-order and high-order feature interactions
play important roles to model user preference.
§ People like to download popular apps à id of an

app may be a signal
§ People often download apps for food delivery at

meal time à interaction between app category and
time-stamp may be a signal

§ Male teenagers like shooting game à interaction of
app category, user gender and age may be a signal

§ Most feature interactions are hidden in data and
difficult to identify (e.g., “diaper and beer" rule)



Background

The challenges of modelling feature interactions:
1) Enumerate all feature interactions

• Large memory and computation cost
• Difficult to be extended into high-order interactions
• Useless interactions

2) Require human efforts to identify important feature interactions
• High labor cost
• Risks missing some counterintuitive (but important) interactions

3) Require human efforts to select appropriate interaction functions
• Human expert knowledge
• Global interaction function for all the feature interactions



Background

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions 
3. Interaction Block Search —— search operations over the whole representation



Feature Interaction Search

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions 
3. Interaction Block Search —— search operations over the whole representation



Feature Interaction Search-AutoFIS

• Not all the feature interactions are useful.
• Identify such noisy feature interactions and filter them.

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD 2020



Feature Interaction Search-AutoFIS

• Search Stage
• Detect useful feature interactions

• Retrain Stage
• Retrain model with selected feature interactions



Feature Interaction Search-AutoFIS

• Gate for each feature interaction
• Huge search space 2&() (m is the number of feature field)

• To make such process differentiable, AutoFIS relaxes the discrete search space to be
continuous, by defining architecture parameters α.

• Batch Normalization to eliminate scale coupling
• Using GRDA Optimizer to obtain stable and sparse architecture parameters

Indicator α = 0 or 1

Search Stage:

• Abandon unimportant feature interactions
• Retrain model

Retrain Stage:



Feature Interaction Search-AutoGroup

The limitation of AutoFIS:
• When searching high-order feature interactions, the search space of AutoFIS is huge,

resulting in low search efficiency.

Solution of AutoGroup:
• To solve the efficiency-accuracy dilemma, AutoGroup proposes automatic feature grouping,

reducing the pth-order search space from 2&(
*

to 2'( (𝑔 is the number of pre-defined groups)

AutoGroup: Automatic Feature Grouping for Modelling Explicit High-order Feature Interactions in CTR Prediction. SIGIR 2020



Feature Interaction Search-AutoGroup

Each feature is possible to be selected into the feature sets of each 
order.
• Π!,#

$ ∈ {0,1}: whether select feature (! into the )%& set of order-*.

To make the selection differentiable, we relax the binary discrete value 
to a softmax over the two possibilities: 

Π!,#
$ = '

'()*+(-.!,#
$ )Π!,#

$ + )*+ -.!,#
$

'()*+ -.!,#
$ (1 − Π!,#

$ ). 

To learn a less-biased selection probability, we use Gumbel-Softmax:

Π!,#
$

0
=	

exp	(	log	70 + 809 )	
∑ exp	(	log	701 + 8019 )21∈ 4,'

	where	> ∈ {0,1}.

74 =
1

1 + exp(−7!,#
$ ) 											7'=

exp −7!,#
$

1 + exp −7!,#
$

80 = − log(− log ?) 	where	? ∼ ABC(>DE 0,1

Trainable Parameters: {"!,#$ }

Feature Grouping Stage:



Feature Interaction Search-AutoGroup

Feature set representation:

𝑔)
* = *

++∈-,
-

𝑤.
* 𝑒.

𝑠!
": the 𝑗#$ feature set for order-𝑝 feature interactions.
𝑒%: embedding for feature 𝑓%
𝑤%
": weights of embeddings in feature set  𝑠!

".

Interaction Stage:

Interaction at a given order:
• The order-𝑝 interaction in a given set 𝑠(

) is:



Feature Interaction Search-FIVES

The limitation of AutoGroup:
• Solve the efficiency-accuracy dilemma via feature grouping
• Ignore the Order-priority property

Ø The higher-order feature interactions quality can be relevant to their de-generated low-order ones

Solution of FIVES:
• Regard the original features as a feature graph and model the high-order feature interactions by the

multilayer convolution of GNN, reducing the pth-order search space from 2*!
"

to 2+#.
• Parameterize the adjacency matrix and make them depend on the previous layer.

FIVES: Feature Interaction via Edge Search for Large-Scale Tabular Data. KDD 2021



Feature Interaction Search-FIVES

• With an adjacency tensor A, the dedicated graph convolutional operator produces the node
representations layer-by-layer. For the 𝑘-order:

• The node representation at 𝑘-th layer corresponds to the generated (𝑘 + 1)-order interactive
features:



Feature Interaction Search-FIVES

• The task of generating useful interactive features is
equivalent to learning an optimal adjacency tensor A,
namely edge search.

• The edge search task could be formulated as a bi-level 
optimization problem:

• To make the optimization more efficient, FIVES uses a soft 
𝐴(0) for propagation at the 𝑘-th layer, while the calculation 
of 𝐴(0)still depends on a binarized 𝐴(023):



Interaction Function Search

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions 
3. Interaction Block Search —— search operations over the whole representation



Interaction Function Search-SIF

• Generate embedding vectors for users and items
• Generate predictions by an inner product between embedding

vectors
• Evaluate predictions by a loss function on the training data set

Efficient Neural Interaction Function Search for Collaborative Filtering. WWW 2020

Interaction function: 
How embedding vectors interact with each other?

Collaborative filtering 



Interaction Function Search-SIF

• SIF selects different interaction functions across different datasets.



Interaction Function Search-AutoFeature

• Not all the feature interactions between each pair of fields need to be modeled.
• Not all the useful feature interactions can be modeled by the same interaction functions.

Feature 1 Feature 2 Feature N

Embed 1 Embed  2 Embed N                             Embedding
                             Layer

Fully Connected Layers

Prediction

Sub-net 1 Sub-net 2 Sub-net i

F1 F2

FC layer

Hidden 
State

F1*F2

AutoFeature: Searching for Feature Interactions and Their Architectures for Click-through Rate Prediction. CIKM 2020



Interaction Function Search-AutoFeature

AutoFeature automatically designs a different sub-net for each pair of fields.
• Train a Naïve Bayes Tree to classify different network structures, where the tree tends to

classify the most well-performed network into the leftmost leaf subspace, such that the next
generation can be more effective.

• Sample leaf nodes from these leaf subspaces based on the Chinese Restaurant Process
(CRP).



Interaction Function Search-AutoFeature

• The top two samples with the highest accuracy will be picked to perform a crossover operation
at the midpoint of the architecture string, which is followed by q mutations.

• Check if the resulting architecture belongs to the subspace represented by the leaf node. If this
is not the case then the procedure is repeated.

• The whole search procedure continues until the desired accuracy is achieved or the maximum
number of steps is reached.



Interaction Block Search

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:
1. Feature Interaction Search —— search beneficial feature interactions
2. Interaction Function Search —— search suitable interaction functions
3. Interaction Block Search —— search operations over the whole representation



Interaction Block Search-AutoCTR

Hierarchical Search Space
• Properties: functionality complementary, complexity aware, …
• Examples: MLP block, dot-product block, factorization-machine block, …

Virtual  
Blocks

Dot-
product FM MLP

Inner products
Inner productsAddition

Addition

Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction. KDD 2020



Interaction Block Search-AutoCTR

Search space construction
• DAG of virtual blocks and grouped feature embeddings
• Both block hyper-parameters and connection among blocks are to be searched

Sparse feature 
embeddings

Dense feature 
concatenation

y

MLP

FM

FM
Linear



Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

Add

Back

All the Explored Architectures

Age     threshold  ≤

Multi-Objective
Selection

Parent
selection

Generate
Neighbors

Learning-to-rank 
Guider

Guided
mutation

Rank-based

Sampling

Search
Loop

New Population
Survivor
selection
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Interaction Block Search-AutoCTR

Multi-Objective Evolutionary Search Algorithm

Add

Back

All the Explored Architectures

Age     threshold  ≤

Multi-Objective
Selection

Parent
selection

Generate
Neighbors

Learning-to-rank 
Guider

Guided
mutation

Rank-based

Sampling

Search
Loop

New Population
Survivor
selection



Interaction Block Search-AutoPI

Search Space
• The interaction cell formulates the higher-order feature interactions
• The ensemble cell formulates the ensemble of lower-order and higher-order interactions

A General Method For Automatic Discovery of Powerful Interactions In Click-Through Rate Prediction. SIGIR 2021



Interaction Block Search-AutoPI

Search Strategy
• Continuous relaxation



Summarize DRS Interaction

* 𝑚 is the number of feature fields, p is the order, 𝑔 is the number of pre-defined groups, 𝑎 is the number of pre-defined 
bolcks, 𝑏 is the number of candidate interaction functions. 

Type Model Search Space Search Strategy

Feature Interaction 
Search

AutoFIS 2,$
% Gradient

AutoGroup 2-+ Gradient
FIVES 2+# Gradient

Interaction Function 
Search

SIF b& Gradient
AutoFeature b,$

% Evolutionary

Interaction Block 
Search

AutoCTR b& Evolutionary
AutoPI b& Gradient
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Background

• Comprehensive search:
Searching for several parts of DRS

• System design:
Searching for architectures other than 
aforementioned parts



Comprehensive Search & System

*More related work please refer to our survey: https://arxiv.org/pdf/2204.01390.pdf

Type Model Search Space Search Strategy
Comprehensive 

Search
AMEIR Sequential model, Feature interaction, 

MLP
One-shot 

Random Search
AIM Embedding Dimension, Intearaction

Function, Feature Interaction
Gradient

AutoIAS Embedding Dimension, Projection 
Dimension, Interaction Function,

Feature Interaction, MLP

Reinforcement 
Learning

System Design AutoLoss Optimization: Loss Function Gradient
AutoGSR Structure Design: GNN Architecture Gradient
AutoFT Parameter Tuning: Fine-Tune or Not 

(For pre-trained models)
Gradient

https://arxiv.org/pdf/2204.01390.pdf
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• Motivation:
• 3 parts: sequential, non-sequential, MLP
• Unified model for all scenarios
• Restricted search space

• Target:
• Searching for 3 parts
• Adaptive model

AMEIR

AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System
IJCAI, 2021

Non-Sequential featuresSequential features



AMEIR – Search Space
• Subspace 1 (Behavior modeling)

• Searching for a fixed number of layers (𝐿)
• Normalization {Layer normalization, None} 
• Layer {Conv, Recur, Pooling, Attention} 
• Activation {ReLU, GeLU, Swish, Identity}

• Subspace 2 (Interaction exploration)
• Interaction function: hadamard product (fixed)
• Feature interaction candidates 

• Subspace 3 (MLP investigation)
• MLP dimension
• Activation: {ReLU, Swish, Identity, Dice}

AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System
IJCAI, 2021



AMEIR
• Overall search strategy: One-shot random search 
• Step 1: Using a predefined MLP, search for the optimal architecture.
• Step 2: Combined with SMBO, progressively expand the interaction sets, also 

use a predefined MLP.
• Step 3: Using a weight matrix of maximal dimension to realize one-shot search

AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System
IJCAI, 2021



AIM
• Search space:

• Feature interaction
• Interaction function
• Embedding dimension

• Strategy:
• Gradient

AIM: Automatic Interaction Machine for Click-Through Rate Prediction, TKDE 



AutoIAS

• Search space:
• Embedding size
• Projection size
• Feature interaction candidates
• Interaction function 
• MLP:

• The number of layers
• Layer dimensions

• Strategy: 
• Knowledge distillation
• Reinforcement learning 

AutoIAS: Automatic Integrated Architecture Searcher for Click-Trough Rate Prediction, CIKM, 2021
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AutoLoss

• Motivation:
• Predefined and fixed loss function
• Exhaustively or manually searched fused loss

• Target:
• Searching for loss function
• Considering convergence behavior

AutoLoss: Automated Loss Function Search in Recommendations, KDD, 2021
Author Slides Link: https://zhaoxyai.github.io/paper/kdd2021slides.pdf

https://zhaoxyai.github.io/paper/kdd2021slides.pdf


AutoLoss – Forward-propagation
• Step 1: the DRS makes predictions 
• Step 2: calculating candidate losses
• Step 3: the controller generates weights(probabilities) according to predictions
• Step 4: calculating the overall Loss (Weighted sum)

AutoLoss: Automated Loss Function Search in Recommendations, KDD, 2021

Step 1 Step 2

Step 3

Step 4



AutoLoss – Backward-propagation 
• DRS network: updated based on training error

• Controller: updated based on validation error

AutoLoss: Automated Loss Function Search in Recommendations, KDD, 2021

validation error

training error



AutoGSR

AutoGSR: Neural Architecture Search for Graph-based Session Recommendation, SIGIR, 2022

• Target: searching for GNN architectures

• Motivation:
• 3 kinds of information
• 5 popular GNNs



AutoGSR

• Search space: 
• Session aggregation: 5 popular graph types.
• Layer aggregation: mean, max, concat, sum & highway & skip. 

• Strategy: continuous relaxion & gradient

AutoGSR: Neural Architecture Search for Graph-based Session Recommendation, SIGIR, 2022



AutoFT

• Target: transfer learning DRS

• Search space:
• Field-wise transfer
• Layer-wise transfer

• Strategy: gradient

AutoFT: Automatic Fine-Tune for Parameters Transfer Learning in Click-Through Rate Prediction
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Conclusion

Automated Machine Learning contribute to improving the performance of deep recommender 
systems in a data-driven manner.
• Search embedding dimensions to better model feature representations
• Design deep networks to better capture feature interactions
• Design comprehensive system architectures to better improve performance

Dataset

Optimization
Metric

Constraints
(Time & Cost)

Automated 
Machine Learning

Machine Learning
Model

Automated Machine Learning



Conclusion

AutoML advantages:
• Different data à different architectures
• Less expert knowledge 
• Saving time and efforts



Summarize DRS Embedding

* 𝑑 is the embedding size, 𝑉 is the vocabulary size, 𝑚 is the number of feature fields, 𝑎 is the number of sub-dimensions, 
𝑏 is the number of groups, 𝑘 is the number of meta-embeddings. (a < d, b<<V)

• The search space of Group Embedding Search is less than Single Embedding Search.
• Limited approaches for embedding learning of numerical features.
• Gradient-based is more popular as it has higher efficiency.

Model Feature Field Search Space Search Strategy

Single 
Embedding 

Search

AMTL Categorical 𝑑! Gradient
PEP Categorical 2!" Regularization

AutoEmb Categorical a! Gradient
ESPAN Categorical a! Reinforcement Learning

Group 
Embedding 

Search

AutoDim Categorical 𝑎# Gradient
DNIS Categorical 2$% Gradient
NIS Categorical 𝑏& Reinforcement Learning

- AutoDis Numerical 2'# Gradient



Summarize DRS Interaction

* 𝑚 is the number of feature fields, p is the order, 𝑔 is the number of pre-defined groups, 𝑎 is the number of pre-defined 
bolcks, 𝑏 is the number of candidate interaction functions. 

• The search space of Feature Interaction Search and Interaction Function Search are
larger than Interaction Block Search.

• Gradient-based is more popular as it has higher efficiency.

Type Model Search Space Search Strategy

Feature Interaction 
Search

AutoFIS 2,$
% Gradient

AutoGroup 2-+ Gradient
FIVES 2+# Gradient

Interaction Function 
Search

SIF b& Gradient
AutoFeature b,$

% Evolutionary

Interaction Block 
Search

AutoCTR b& Evolutionary
AutoPI b& Gradient



Summarize Comprehensive Search & System

Type Model Search Space Search Strategy

Comprehensive 
Search

AMEIR Sequential model, Feature interaction, 
MLP

One-shot 
Random Search

AIM Embedding Dimension, Intearaction
Function, Feature Interaction

Gradient

AutoIAS Embedding Dimension, Projection 
Dimension, Interaction Function,

Feature Interaction, MLP

Reinforcement 
Learning

System Design

AutoLoss Optimization: Loss Function Gradient
AutoGSR Structure Design: GNN Architecture Gradient
AutoFT Parameter Tuning: Fine-Tune or Not 

(For pre-trained models)
Gradient

• Comprehensive search: separately search
• System design: AutoML is widely appied.
• Gradient-based is more popular as it has higher efficiency.



Future Directions

1) Feature Embedding
• Combine the feature representation learning with model compression or quantization
• Multi-modality feature representation learning, such as text, pictures, audio, and video

2) Feature Interaction
• Personalized feature interactions search for different users
• Introduce complex interaction operators for generating more diverse interaction functions

3) Comprehensive system architectures 
• Searches for multiple components (embedding, interaction and MLP) simultaneously



Future Directions

4) AutoML Algorithm
• Design AutoML algorithm (search and evaluation strategy) that is more in line with the 

recommendation scenario

5) Model Selection
• Search different sub-models/sub-architectures according to different requests adaptively

6) Muti-task learning
• Multi-task learning is one of the most important techniques in industry recommendation for 

considering different revenue targets (e.g., ctr, cvr, vv). Designing an automatic algorithm for 
recommendation based on muti-task learning

7) User Behavior Modeling
• User history behaviors contain different dimensions of interests. Automatically retrieve beneficial 

history behaviors for modeling user preference



Q&A

Automated Machine Learning for Deep Recommender Systems: A Survey

https://arxiv.org/pdf/2204.01390

https://arxiv.org/pdf/2204.01390

