

Automated Machine Learning for Recommendations: Fundamentals and Advances

Xiangyu Zhao City University of Hong Kong <u>xianzhao@cityu.edu.hk</u>

Wenqi Fan

The Hong Kong Polytechnic University wenqifan03@gmail.com Huifeng Guo Huawei Noah's Ark Lab

huifeng.guo@huawei.com

Bo Chen Huawei Noah's Ark Lab <u>chenbo116@huawei.com</u> Yejing Wang City University of Hong Kong <u>adave631@gmail.com</u> Ruiming Tang Huawei Noah's Ark Lab tangruiming@huawei.com

Tutorial Website (Slides): https://advanced-recommender-systems.github.io/AutoML-Recommendations/ Automated Machine Learning for Deep Recommender Systems: A Survey, arXiv:2204.01390

Information overload

Items can be Products, News, Movies, Videos, Friends, etc.

Recommendation has been widely applied in online services:

- E-commerce, Content Sharing, Social Networking ...

Product Recommendation

Frequently bought together

Recommendation has been widely applied in online services: - E-commerce, Content Sharing, Social Networking ...

News/Video/Image Recommendation

Recommended based on your interests

More For you

This Research Paper From Google Research Proposes A 'Message Passing Graph Neural Network' That Explicitly Models Spatio-Temporal Relations MarkTechPost + 2 days ago

Tested: Brydge MacBook Vertical Dock, completing my MacBook Pro desktop 9to5Mac · 21 hours ago

CrazyFrogVE

Papia

Champions (Ding a Dang 35,174,544 views • 5 years ago CrazyFrogVEV0 45.163.066 views · 6 years ago

CrazyErogVEVO E

Construction Fail Compilation 2015 NEW! Papiaani 2,524,529 views • 3 months ago

1,382,590 views • 1 month ago

Recommender Systems

Recommendation has been widely applied in online services: - E-commerce, Content Sharing, **Social Networking** ...

Friend Recommendation

Problem Formulation

Historical user-item interactions or additional side information (e.g., social relations, item's knowledge, etc.) OUTPUT Predict how likely a user would interact with a target Item (e.g., click, view, or purchase)

• Collaborative Filtering (CF) is the most well-known technique for recommendation.

- Similar users (with respect to their historical interactions) have similar preferences.
- Modelling users' preference on items based on their past interactions (e.g., ratings and clicks).

Learning representations of users and items is the key of CF.

Task: predicting missing movie ratings in Netflix.

Deep Learning is Changing Our Lives

System Design

hardware infrastructure, data pipeline, information transfer, implementation, deployment, optimization, evaluation, etc.

✓ Advantages

- Feature representations of users and items
- Non-linear relationships between users and items
- > Manually designed architecture:
 - extensive expertise
 - substantial engineering labor and time cost
 - human bias and error

AutoML for Deep Recommender Systems (DRS) &

- Deep architectures are designed by the machine automatically
- Advantages
 - ✓ Less expert knowledge
 - ✓ Saving time and efforts
 - ✓ Different data ->different architectures

Image: Huan Zhao

Agenda

- Introduction to Deep Recommender System (Wenqi Fan)
- Preliminary of AutoML (Xiangyu Zhao)
- DRS Embedding Components (Bo Chen)
- DRS Interaction Components (Bo Chen)
- DRS Comprehensive Search & System (Yejing Wang)
- Conclusion & Future Direction (Xiangyu Zhao)

≻Q&A

Automated Machine Learning for Deep Recommender Systems: A Survey. arXiv:2204.01390

Tutorial Website (Slides): <u>https://advanced-recommender-systems.github.io/AutoML-Recommendations/</u>

- Introduction
 - Background
- Preliminary of Automated Machine Learning (AutoML)
 - Neural Architecture Search (NAS)
- DRS Embedding Components
- DRS Interaction Components
- DRS Comprehensive Search & System
- Conclusion & Future Direction

Success of Machine Learning

Astronomy	Robotic	Creative Arts	Teachin	ng Material Design
Energy	Game Play	Search	С	hemistry
Image	Weather		Health Care	Physics
Recognition	Prediction	Product Recommendation	Dis	Drug scovery
Manufacturing	Service		Financial	
	Traffic Prediction	Retail	Services Cı Assiç	Credit Assignment
Maintenance Prediction	Sc Me	Media ocial edia	Summary Generation	

Machine Learning Pipeline

Preprocessing?

 \rightarrow We might want more than 1 data preprocessor!

Complexity of the Preprocessing

- Naive Assumptions: only 3 decisions at each level
- **Possible options**: 3 x 3 x 3 = **27**
- More realistic assumption: at least 10 decisions at leach level
- **Possible options:** 10 x 10 x 10 = **1000**

HUAWE

- Still naive!
 → Hyperparameters are often continuous and not discrete
 → infinite amount of settings!

From Manual ML to Automated ML

Design Decisions by AutoML

...

Algorithms

Neural Architecture Search (NAS)

- Find neural architecture A such that deep learning works best for given data
 - Measured by validation error of architecture A with trained weights $w^*(A)$

$$\min_{A \in \mathcal{A}} \mathcal{L}_{val}(w^*(A), A)$$

s.t. $w^*(A) \in \operatorname{argmin}_w \mathcal{L}_{train}(w, A)$

Famously tackled by

reinforcement learning [Zoph & Le, ICLR 2017]

- 12.800 architectures trained fully
- 800 GPUs for 2 weeks (about \$60.000 USD)

Number of papers on NAS published in conferences, journals and arXiv

Major Components

- Search Space:
 - A set of operations (e.g. convolution, fullyconnected, pooling)
 - how operations can be connected to form valid network architectures
 - identity
 - 1x7 then 7x1 convolution
 - 3x3 average pooling
 - 5x5 max pooling
 - 1x1 convolution
 - 3x3 depthwise-separable conv
 - 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
- 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

Major Components

- Search Strategy
 - Sampling a population of network architecture candidates (child models)
 - Rewards: child model performance metrics (e.g. high accuracy, low latency)
- Algorithms
 - Random Search
 - Reinforcement Learning
 - Gradient descent
 - Evolutionary Algorithms

Major Components

- Evaluation Strategy
 - We need to estimate or predict the performance of child models
 - In order to obtain feedback for the search algorithm to learn
- Methods
 - Training from Scratch
 - Proxy Task Performance
 - Parameter Sharing
 - Prediction-Based

NAS with Reinforcement Learning

- NAS with Reinforcement Learning [Zoph & Le, ICLR 2017]
 - State-of-the-art results for CIFAR-10, Penn Treebank
 - Large computational demands:

800 GPUs for 3-4 weeks, 12.800 architectures trained

NAS with Reinforcement Learning

[Zoph & Le, ICLR 2017]

- Architecture of neural network represented as string e.g., ["filter height: 5", "filter width: 3", "# of filters: 24"]
- Controller (RNN) generates string that represents architecture

Accuracy of architecture on held-out dataset

$$J(\theta_c) = E_{P(a_{1:T};\theta_c)}[R]$$

Architecture predicted by the controller RNN viewed as a sequence of actions

NAS as Hyperparameter Optimization

[Zoph & Le, ICLR 2017]

- Architecture of neural network represented as string e.g., ["filter height: 5", "filter width: 3", "# of filters: 24"]
- We can simply treat these as categorical parameters
 - E.g., 25 cat. parameters for each of the 2 cells in [Zoph et al, CVPR 2018]

Neuroevolution

(already since the 1990s [Angeline et al., 1994; Stanley and Miikkulainen, 2002])

• Mutation steps, such as adding, changing or removing a layer

[Real et al., ICML 2017; Miikkulainen et al., arXiv 2017]

Huge Compute of Blackbox Methods

HUAWEI

CityU

Overview of NAS Speedup Techniques

- Weight Inheritance & Network Morphisms
 - Local changes in architecture, followed by fine-tuning steps
 - [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019]
- Weight Sharing & One-Shot Models
 - ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups
- Meta-Learning
 - Learning across datasets
 - To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
 - Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al, 2020]
- Multi-Fidelity Optimization
 - Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
 - [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]

Network Morphisms

- Network morphisms [Chen et al., 2016; Wei et al., 2016]
 - Change the network structure, but not the modelled function (i.e., for every input, the network yields the same output
 - as before applying the network morphism)

- Can use this in NAS algorithms as operations to generate new networks
- Avoids costly training from scratch

Overview of NAS Speedup Techniques

• Weight Inheritance & Network Morphisms

- Local changes in architecture, followed by fine-tuning steps
- [Cai et al, 2018; Elsken et al, 2017; Cortes et al, 2017; Cai et al, 2018, Elsken et al, 2019]
- Weight Sharing & One-Shot Models
 - ENAS [Pham et al, 2018], DARTS [Liu et al, 2019] and many follow-ups
- Meta-Learning
 - Learning across datasets
 - To initialize architectural weights of DARTS [Lian et al, 2020; Elsken et al, 2020]
 - Prior for blackbox optimization methods [Wong et al, 2018; Runge et al, 2019; Zimmer et al, 2020]
- Multi-Fidelity Optimization
 - Exploit cheaper proxy models for blackbox optimizers, in particular Bayesian optimization
 - [Jamieson & Talwalkar, 2016; Li et al, 2017; Falkner et al, 2018; Zela et al, 2018; White et al, 2021]

DARTS: Differentiable Architecture Search

[Liu et al at ICLR 2019]

Candidate operations

- identity
- 1x7 then 7x1 convolution
- 3x3 average pooling
- 5x5 max pooling
- 1x1 convolution
- 3x3 depthwise-separable conv
- 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
- 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

DARTS: Differentiable Architecture Search

[Liu et al at ICLR 2019]

- Relax the discrete NAS problem (a->b)
 - One-shot model with continuous architecture weight α for each operator

- Mixed operator:
$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

• Solve a bi-level optimization problem (c)

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$

s.t. $w^*(\alpha) = \operatorname{argmin}_w \quad \mathcal{L}_{train}(w, \alpha)$

• In the end, discretize to obtain a single architecture (d)

- Introduction
 - Background
- Preliminary of AutoML
 - Neural Architecture Search (NAS)
- DRS Embedding Components
- DRS Interaction Components
- DRS Comprehensive Search & System
- Conclusion & Future Direction

- Introduction
 - Background
- Preliminary of AutoML
 - Neural Architecture Search (NAS)
- DRS Embedding Components
- DRS Interaction Components
- DRS Comprehensive Search & System
- Conclusion & Future Direction

- Introduction
 - Background: Deep Recommender Systems
- Preliminary of AutoML
- DRS Embedding Components
 - Single Embedding Search
 - Group Embedding Search
- DRS Interaction Components
 - Feature Interaction Search
 - Interaction Function Search
 - Interaction Block Search
- DRS Comprehensive Search & System
- Conclusion & Future Direction

Background

- The Embedding layer is used to map the highdimensional features into a low-dimensional latent space.
- The cornerstone of the DRS, as the number of parameters in DRS is concentrated in the embedding table.

Background

To **improve the prediction accuracy, save storage space and reduce model size**, AutoMLbased solutions are proposed for the learning of feature embedding.

- 1. Single Embedding Search search for each feature value
- 2. Group Embedding Search search for a group of feature values

Single Embedding Search

To improve the prediction accuracy, save storage space and reduce model size, AutoML-based solutions are proposed for the learning of feature embedding.

1. Single Embedding Search — search for each feature value

2. Group Embedding Search — search for a group of feature values

Single Embedding Search-AMTL

- Search space: d^V (d is the embedding size and V is the vocabulary size)
- **Twins-based architecture** to avoid the unbalanced parameters update problem due to different frequencies.
- The twins-based architecture acts as a frequency-aware policy network to search the optimal dimension for each feature value → relaxed to a continuous space by temperature softmax.

Figure 2: The framework of AMTL.

Learning effective and efficient embedding via an adaptively-masked twins-based layer. CIKM 2021.

d_1 \tilde{d}_1

dense

min
$$\mathcal{L}, s.t. ||\mathbf{V}||_0 \le k$$
, NP-hard
 \downarrow
Soft threshold re-parameterization :
 $\hat{\mathbf{V}} = \mathcal{S}(\mathbf{V}, s) = sign(\mathbf{V}) \text{ReLU}(|\mathbf{V}| - [g(s)]),$
min $\mathcal{L}(\mathcal{S}(\mathbf{V}, s), \Theta, \mathcal{D}).$

HUAWE

- Pruning-based Solution by enforcing column-wise sparsity on the embedding table with L₀ normalization.
- Search Space: 2^{Vd} (d is the embedding size and V is the vocabulary size)

sparse

PEP: Learnable Embedding Sizes for Recommender Systems. ICLR 2021.

Single Embedding Search

- The search space of PEP and AMTL is highly related with the embedding size d.
- To reduce the search space, AutoEmb and ESPAN divide the embedding dimension into several column-wise sub-dimensions.

HUAWE

Single Embedding Search-AutoEmb & ESPAN

Reduce the search space by dividing the embedding dimension into several candidate sub-dimensions

HUAWE

Transform

- Embedding dimension often determines the capacity to encode information.
- Dynamically search the embedding sizes for different users and items \bullet
 - Optimal recommendation quality all the time
 - More efficient in memory

Single Embedding Search-AutoEmb

- Search Space: From d^V to a^V (*d* is the embedding size and *V* is the vocabulary size, and *a* is the number of sub-dimensions for each feature)
- Two **controller networks** to decide the embedding sizes for users and items via end-to-end differentiable soft selection.
- Sum over the candidate subdimensions with learnable weights. (Soft Selection)

AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations. ICDM 2021.

Single Embedding Search-ESPAN

- Two Components
 - Deep recommendation model
 - Embedding Size Adjustment Policy Network (ESAPN) RL (Hard Selection)

Group Embedding Search

HUAWE

To improve the prediction accuracy, save storage space and reduce model size, AutoML-based solutions are proposed for the learning of feature embedding.

- 1. Single Embedding Search search for each feature value
- 2. Group Embedding Search —— search for a group of feature values

Group Embedding Search

- AutoEmb and ESAPN shrink the search space by dividing the embedding dimension into candidate **column-wise sub-dimensions**.
- Group the feature values of a field based on some indicators (e.g., frequencies) and assign a row-wise group embedding dimension for all the values within the group.

global embedding dimension for all the feature values of the field.

• Search Space: From a^V to a^m (where d is the embedding size and V is the vocabulary size, and a is the number of sub**dimensions** for each feature, *m* is **the number of feature fields**)

Pre-defines several candidate sub-dimensions like

Goal:

AutoEmb.

Selecting embedding dimensions to **different feature fields** automatically in a data-driven manner.

AutoDim: Field-aware Embedding Dimension Search in Recommender Systems. WWW 2021.

Group Embedding Search-AutoDim

User

Item

Context

Output Layer

Input Features

Field M

Interaction

Search space: from 2^{Vd} into 2^{bd} (where *b* is the number of groups)

 Search for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization.

Split the features into **multi-groups** based on the

Search stage:
$$\tilde{\mathbf{e}}_i = \mathbf{e}_i \odot \alpha_{l*}$$

feature frequencies or clustering.

•

Derive stage:
$$\tilde{\mathbf{E}}_{i,j} = \begin{cases} 0, & \text{if } |\tilde{\mathbf{E}}_{i,j}| < \epsilon \\ \tilde{\mathbf{E}}_{i,j}, & \text{otherwise} \end{cases}$$

DNIS: Differentiable Neural Input Search for Recommender Systems. In Arxiv.

c = 1

(b) Model structure.

Group Embedding Search-NIS

- Input component assigns embedding vectors to each item of these discrete features, which dominate both the size and the inductive bias of the model.
- The vocabulary and embedding sizes for discrete features are often selected heuristically.

Solution 3: column-wise sub-dimensions row-wise group embedding dimension

Head Feature

- More data, more information
- Needing larger embedding size

Tail Feature

- Less data, less information
- Small embedding size is enough

NIS: Neural Input Search for Large Scale Recommendation Models. KDD 2020.

Group Embedding Search-NIS

Reward

Single-size Embedding (SE) Multi-size Embedding (ME)

Embedding Blocks: discretizing an embedding matrix of size v × d into S × T sub-matrices

AutoDis: An Embedding Learning Framework for Numerical Features in CTR Prediction. KDD 2021.

Numerical Embedding-AutoDis

Existing methods for numerical feature representation have some limitations:

- 1. Category 1: No Embedding
- Low capacity: difficult to capture informative knowledge of numerical fields.
- **Poor compatibility**: difficult to adapt to some models (e.g., FM).
- 2. Category 2: Field Embedding
- Low capacity: single shared field-specific embedding.
- 3. Category 3: Discretization
- **TPP** (Two-Phase Problem)
- **SBD** (Similar value But Dis-similar embedding)
- **DBS** (Dis-similar value But Same embedding)

Numerical Embedding-AutoDis

AutoDis is a numerical features embedding learning framework with **high model capacity, endto-end training and unique representation** properties preserved.

	Model	Feature Field	Search Space	Search Strategy
Single Embedding Search	AMTL	Categorical	d^V	Gradient
	PEP	Categorical	2^{Vd}	Regularization
	AutoEmb	Categorical	a ^V	Gradient
	ESPAN	Categorical	a ^V	Reinforcement Learning
Group Embedding Search	AutoDim	Categorical	a^{m}	Gradient
	DNIS	Categorical	2 ^{bd}	Gradient
	NIS	Categorical	b ^a	Reinforcement Learning
-	AutoDis	Numerical	2 ^{km}	Gradient

* *d* is the embedding size, *V* is the vocabulary size, *m* is the number of feature fields, *a* is the number of sub-dimensions, *b* is the number of groups, *k* is the number of meta-embeddings. (a < d, b << V)

- Introduction
 - Background: Deep Recommender Systems
- Preliminary of AutoML
- DRS Embedding Components
 - Single Embedding Search
 - Group Embedding Search
- DRS Interaction Components
 - Feature Interaction Search
 - Interaction Function Search
 - Interaction Block Search
- DRS Comprehensive Search & System
- Conclusion & Future Direction

Effectively modelling feature interactions is important.

- Both low-order and high-order feature interactions play important roles to model user preference.
 - People like to download popular apps → id of an app may be a signal
 - People often download apps for food delivery at meal time → interaction between app category and time-stamp may be a signal
 - Male teenagers like shooting game → interaction of app category, user gender and age may be a signal
- Most feature interactions are hidden in data and difficult to identify (e.g., "diaper and beer" rule)

Background

The challenges of modelling feature interactions:

- 1) Enumerate all feature interactions
 - Large memory and computation cost
 - Difficult to be extended into high-order interactions
 - Useless interactions
- 2) Require human efforts to identify important feature interactions
 - High labor cost
 - Risks missing some counterintuitive (but important) interactions
- 3) Require human efforts to select appropriate interaction functions
 - Human expert knowledge
 - Global interaction function for all the feature interactions

Background

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:

- 1. Feature Interaction Search search beneficial feature interactions
- 2. Interaction Function Search search suitable interaction functions
- 3. Interaction Block Search search operations over the whole representation

Feature Interaction Search

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:

1. Feature Interaction Search — search beneficial feature interactions

- 2. Interaction Function Search search suitable interaction functions
- 3. Interaction Block Search search operations over the whole representation

Feature Interaction Search-AutoFIS

- Not all the feature interactions are useful.
- Identify such noisy feature interactions and filter them.

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD 2020

Feature Interaction Search-AutoFIS

- Search Stage
 - Detect useful feature interactions
- Retrain Stage
 - Retrain model with selected feature interactions

Feature Interaction Search-AutoFIS

Search Stage:

- Gate for each feature interaction
 - Huge search space $2^{C_m^2}$ (m is the number of feature field)
- To make such process differentiable, AutoFIS relaxes the discrete search space to be continuous, by defining architecture parameters α .
 - Batch Normalization to eliminate scale coupling
 - Using GRDA Optimizer to obtain stable and sparse architecture parameters

$$l_{\text{AutoFIS}} = \langle w, x \rangle + \sum_{i=1}^{m} \sum_{j>i}^{m} \alpha_{(i,j)} \langle e_i, e_j \rangle$$

Indicator $\alpha = 0$ or 1

Retrain Stage:

- Abandon unimportant feature interactions
- Retrain model

Feature Interaction Search-AutoGroup

The limitation of AutoFIS:

• When searching **high-order feature interactions**, the search space of AutoFIS is huge, resulting in low search efficiency.

Solution of AutoGroup:

• To solve the *efficiency-accuracy dilemma*, AutoGroup proposes automatic feature grouping, reducing the pth-order search space from $2^{C_m^p}$ to 2^{gm} (g is the number of pre-defined groups)

Feature Grouping Stage:

Each feature is possible to be selected into the feature sets of each order.

HUAWE

• $\Pi_{i,j}^p \in \{0,1\}$: whether select feature f_i into the j^{th} set of order-p.

To make the selection differentiable, we relax the binary discrete value to a softmax over the two possibilities:

$$\overline{\Pi}_{i,j}^p = \frac{1}{1 + \exp(-\alpha_{i,j}^p)} \Pi_{i,j}^p + \frac{\exp(-\alpha_{i,j}^p)}{1 + \exp(-\alpha_{i,j}^p)} (1 - \Pi_{i,j}^p).$$

To learn a less-biased selection probability, we use Gumbel-Softmax:

$$\left(\overline{\Pi}_{i,j}^{p}\right)_{o} = \frac{\exp(\frac{\log \alpha_{o} + G_{o}}{\tau})}{\sum_{o' \in \{0,1\}} \exp(\frac{\log \alpha_{o'} + G_{o'}}{\tau})} \text{ where } o \in \{0,1\}$$
$$\alpha_{0} = \frac{1}{1 + \exp(-\alpha_{i,j}^{p})} \qquad \alpha_{1} = \frac{\exp(-\alpha_{i,j}^{p})}{1 + \exp(-\alpha_{i,j}^{p})}$$
$$G_{o} = -\log(-\log u) \text{ where } u \sim Uniform(0,1)$$

Trainable Parameters: $\{\alpha_{i,j}^p\}$

Feature Interaction Search-AutoGroup

Interaction Stage:

Feature set representation:

$$g_j^p = \sum_{f_i \in s_i^p} w_i^p e_i$$

HUAWE

 s_j^p : the j^{th} feature set for order-p feature interactions. e_i : embedding for feature f_i w_i^p : weights of embeddings in feature set s_j^p .

Interaction at a given order:

• The order-*p* interaction in a given set s_i^p is:

$$I_j^p = \begin{cases} (g_j^p)^p - \sum_{f_i \in s_j^p} (w_i^p e_i)^p \in R, & p \ge 2\\ g_j^p \in R^k, & p = 1 \end{cases}$$
Feature Interaction Search-FIVES

The limitation of AutoGroup:

- Solve the *efficiency-accuracy dilemma* via feature grouping
- Ignore the Order-priority property
 - > The higher-order feature interactions quality can be relevant to their de-generated low-order ones

Solution of FIVES:

- Regard the original features as a **feature graph** and model the high-order feature interactions by the multilayer convolution of **GNN**, reducing the pth-order search space from $2^{C_m^p}$ to 2^{m^2} .
- Parameterize the adjacency matrix and make them depend on the previous layer.

FIVES: Feature Interaction via Edge Search for Large-Scale Tabular Data. KDD 2021

Feature Interaction Search-FIVES

• With an adjacency tensor A, the dedicated **graph convolutional** operator produces the node representations **layer-by-layer**. For the *k*-order:

$$\mathbf{n}_{i}^{(k)} = \mathbf{p}_{i}^{(k)} \odot \mathbf{n}_{i}^{(k-1)}$$

where
$$\mathbf{p}_{i}^{(k)} = \text{MEAN}_{j \mid \mathbf{A}_{i,j}^{(k)} = 1} \{\mathbf{W}_{j} \mathbf{n}_{j}^{(0)}\}.$$

• The node representation at *k*-th layer corresponds to the generated (*k* + 1)-order interactive features:

$$\mathbf{n}_{i}^{(k)} = \mathrm{MEAN}_{j|\mathbf{A}_{i,j}^{(k)}=1} \{ \mathbf{W}_{j} \mathbf{n}_{j}^{(0)} \} \odot \mathbf{n}_{i}^{(k-1)}$$

$$\approx \mathrm{MEAN}_{(c_{1},...,c_{k})|\mathbf{A}_{i,c_{j}}^{(j)}=1, j=1,...,k} \{ f_{c_{1}} \otimes \cdots \otimes f_{c_{k}} \otimes f_{i} \},$$

- The task of generating useful interactive features is
- equivalent to learning an optimal adjacency tensor A, namely edge search.
- The edge search task could be formulated as a bi-level optimization problem:

s.t.
$$\begin{split} \min_{A} \mathcal{L}(\mathcal{D}_{\text{val}} | A, \Theta(A)) \\ \Theta(A) &= \arg\min_{\Theta} \mathcal{L}\left(\mathcal{D}_{\text{train}} | A, \Theta\right) \end{split}$$

(3)

• To make the optimization more efficient, FIVES uses a soft $A^{(k)}$ for propagation at the *k*-th layer, while the calculation of $A^{(k)}$ still depends on a binarized $A^{(k-1)}$:

$$A^{(k)} \triangleq \left(D^{(k-1)}\right)^{-1} \varphi(A^{(k-1)}) \sigma(H^{(k)})$$
Degree matrix of $A^{(k-1)}$
Interactions at k-th layer
Binarize the soft $A^{(k-1)}$
(4)

Feature Interaction Search-FIVES

Interaction Function Search

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:

- 1. Feature Interaction Search search beneficial feature interactions
- 2. Interaction Function Search —— search suitable interaction functions
- 3. Interaction Block Search search operations over the whole representation

Interaction Function Search-SIF

- Generate embedding vectors for users and items
- Generate predictions by an inner product between embedding vectors
- Evaluate predictions by a loss function on the training data set

Interaction function: How embedding vectors interact with each other?

> IFC predict time recent examples operation space MF [28], FM [37] $\langle u_i, v_j \rangle$ inner product O((m+n)k)O(k)CML [19] plus (minus) O((m+n)k)O(k) $u_i - v_i$ human-designed $\max(u_i, v_j)$ O((m+n)k)O(k)ConvMF [25] max, min $\sigma([\boldsymbol{u}_i; \boldsymbol{v}_i])$ O((m+n)k)O(k)Deep&Wide [9] concat $O(k^2)$ $\sigma\left(\boldsymbol{u}_{i} \odot \boldsymbol{v}_{i} + \boldsymbol{H}\left[\boldsymbol{u}_{i}; \boldsymbol{v}_{i}\right]\right)$ NCF [17] O((m+n)k)multi, concat $O(k \log(k))$ ConvMF [25] O((m+n)k) $u_i * v_j$ conv $O(k^2)$ O((m+n)k)ConvNCF [16] $\boldsymbol{u}_i \otimes \boldsymbol{v}_j$ outer product AutoML SIF (proposed) O((m+n)k)O(k)searched

Is there an absolute best IFC? : NO, depends on tasks and datasets ^[1]

Efficient Neural Interaction Function Search for Collaborative Filtering. WWW 2020

Collaborative filtering

items

5

Interaction Function Search-SIF

• SIF selects different interaction functions across different datasets.

IFC	operation	
$\langle \boldsymbol{u}_i, \boldsymbol{v}_j \rangle$	inner product	
$\boldsymbol{u}_i - \boldsymbol{v}_j$	plus (minus)	
$\max\left(\boldsymbol{u}_{i},\boldsymbol{v}_{j}\right)$	max, min	
$\sigma([\boldsymbol{u}_i; \boldsymbol{v}_j])$	concat	
$\sigma\left(\boldsymbol{u}_{i}\odot\boldsymbol{v}_{j}+\boldsymbol{H}\left[\boldsymbol{u}_{i};\boldsymbol{v}_{j}\right]\right)$	multi, concat	
$\boldsymbol{u}_i * \boldsymbol{v}_j$	conv	
$\boldsymbol{u}_i \otimes \boldsymbol{v}_j$	outer product	

Cut the search space into two blocks

- Vector-level: simple linear algebra operations
- Elementwise: shared nonlinear transformation

Interaction Function Search-AutoFeature

- Not all the feature interactions between each pair of fields need to be modeled.
- Not all the useful feature interactions can be modeled by the same interaction functions.

AutoFeature: Searching for Feature Interactions and Their Architectures for Click-through Rate Prediction. CIKM 2020

AutoFeature automatically designs a different sub-net for each pair of fields.

- Train a Naïve Bayes Tree to classify different network structures, where the tree tends to classify the most well-performed network into the leftmost leaf subspace, such that the next generation can be more effective.
- Sample leaf nodes from these leaf subspaces based on the Chinese Restaurant Process (CRP).

Interaction Function Search-AutoFeature

- The top two samples with the highest accuracy will be picked to perform a **crossover** operation at the midpoint of the architecture string, which is followed by q **mutations**.
- **Check** if the resulting architecture belongs to the subspace represented by the leaf node. If this is not the case then the procedure is repeated.
- The whole search procedure continues until the desired accuracy is achieved or the maximum number of steps is reached.

Interaction Block Search

Automatically select important feature interactions with appropriate interaction functions

AutoML for feature interaction search:

- 1. Feature Interaction Search search beneficial feature interactions
- 2. Interaction Function Search search suitable interaction functions
- 3. Interaction Block Search —— search operations over the whole representation

Hierarchical Search Space

- Properties: functionality complementary, complexity aware, ...
- Examples: MLP block, dot-product block, factorization-machine block, ...

Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction. KDD 2020

Search space construction

- DAG of virtual blocks and grouped feature embeddings
- Both block hyper-parameters and connection among blocks are to be searched

Search Space

- The interaction cell formulates the higher-order feature interactions
- The ensemble cell formulates the ensemble of lower-order and higher-order interactions

Search Strategy

Continuous relaxation

Continuous relaxation visualization

By introducing the **operator-level** and **edge-level architecture parameters** for continuous relaxation, a **differentiable objective function** will be obtained:

$$\begin{split} \min_{\alpha,\beta} \ \mathcal{L}_{val} \left(w^*(\alpha,\beta), \alpha, \beta \right) \\ \text{s.t. } w^*(\alpha,\beta) = \operatorname{argmin}_w \mathcal{L}_{\text{train}} \left(w, \alpha, \beta \right) \end{split}$$

Туре	Model	Search Space	Search Strategy
Feature Interaction Search	AutoFIS	$2^{C_m^p}$	Gradient
	AutoGroup	2 ^{<i>gm</i>}	Gradient
	FIVES	2^{m^2}	Gradient
Interaction Function Search	SIF	b ^a	Gradient
	AutoFeature	$b^{c_m^p}$	Evolutionary
Interaction Block Search	AutoCTR	b ^a	Evolutionary
	AutoPI	b ^a	Gradient

* m is the number of feature fields, p is the order, g is the number of pre-defined groups, a is the number of pre-defined bolcks, b is the number of candidate interaction functions.

- Introduction
 - Background: Deep Recommender Systems
- Preliminary of AutoML
- DRS Embedding Components
 - Single Embedding Search
 - Group Embedding Search
- DRS Interaction Components
 - Feature Interaction Search
 - Interaction Function Search
 - Interaction Block Search
- DRS Comprehensive Search & System
- Conclusion & Future Direction

Background

 Comprehensive search: Searching for several parts of DRS

 System design: Searching for architectures other than aforementioned parts

Туре	Model	Search Space	Search Strategy
Comprehensive Search	AMEIR	Sequential model, Feature interaction, MLP	One-shot Random Search
	AIM	Embedding Dimension, Intearaction Function, Feature Interaction	Gradient
	AutoIAS	Embedding Dimension, Projection Dimension, Interaction Function, Feature Interaction, MLP	Reinforcement Learning
System Design	AutoLoss	Optimization: Loss Function	Gradient
	AutoGSR	Structure Design: GNN Architecture	Gradient
	AutoFT	Parameter Tuning: Fine-Tune or Not (For pre-trained models)	Gradient

*More related work please refer to our survey: <u>https://arxiv.org/pdf/2204.01390.pdf</u>

- DRS Comprehensive Search & System
 - Comprehensive Search
 - System Design

AMEIR

AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System IJCAI, 2021

AMEIR – Search Space

- Subspace 1 (Behavior modeling)
 - Searching for a fixed number of layers (L)
 - Normalization {Layer normalization, None}
 - Layer {Conv, Recur, Pooling, Attention}
 - Activation {ReLU, GeLU, Swish, Identity}
- Subspace 2 (Interaction exploration)
 - Interaction function: hadamard product (fixed)
 - Feature interaction candidates
- Subspace 3 (MLP investigation)
 - MLP dimension
 - Activation: {ReLU, Swish, Identity, Dice}

HUAWE

Stage 2: Feature interaction search

AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System IJCAI, 2021

AMEIR

- Overall search strategy: One-shot random search
- Step 1: Using a predefined MLP, search for the optimal architecture.
- Step 2: Combined with SMBO, progressively expand the interaction sets, also use a predefined MLP.
- Step 3: Using a weight matrix of maximal dimension to realize one-shot search

AIM

• Search space:

• Strategy:

Gradient

- Feature interaction
- Interaction function
- Embedding dimension

AIM: Automatic Interaction Machine for Click-Through Rate Prediction, TKDE

AutoIAS

• Search space:

- Embedding size
- Projection size
- Feature interaction candidates
- Interaction function
- MLP:
 - The number of layers
 - Layer dimensions
- Strategy:
 - Knowledge distillation
 - Reinforcement learning

AutoIAS: Automatic Integrated Architecture Searcher for Click-Trough Rate Prediction, CIKM, 2021

- DRS Comprehensive Search & System
 - Comprehensive Search
 - System Design

AutoLoss

• Motivation:

• Target:

AutoLoss: Automated Loss Function Search in Recommendations, KDD, 2021 Author Slides Link: https://zhaoxyai.github.io/paper/kdd2021slides.pdf

AutoLoss – Forward-propagation

- Step 1: the DRS makes predictions
- Step 2: calculating candidate losses
- Step 3: the controller generates weights(probabilities) according to predictions
- Step 4: calculating the overall Loss (Weighted sum)

AutoLoss: Automated Loss Function Search in Recommendations, KDD, 2021

AutoLoss – Backward-propagation

- DRS network: updated based on training error
- Controller: updated based on validation error

AutoGSR

Target: searching for GNN architectures	Session graph	Aggregation function
	EOP Multigraph	EOPA [3]
	Shortcut Graph	SGAT [3]
Motivation:	Relational Graph	Relational GAT [30]
 3 kinds of information 	EOP Relational Graph	Relational GGNN
	Mixup Graph	Mixup
• 5 popular GNNs		

AutoGSR

- Search space:
 - Session aggregation: 5 popular graph types.
 - Layer aggregation: mean, max, concat, sum & highway & skip.
- Strategy: continuous relaxion & gradient

AutoGSR: Neural Architecture Search for Graph-based Session Recommendation, SIGIR, 2022

AutoFT

AutoFT: Automatic Fine-Tune for Parameters Transfer Learning in Click-Through Rate Prediction

- Introduction
 - Background: Deep Recommender Systems
- Preliminary of AutoML
- DRS Embedding Components
 - Single Embedding Search
 - Group Embedding Search
- DRS Interaction Components
 - Feature Interaction Search
 - Interaction Function Search
 - Interaction Block Search
- DRS Comprehensive Search & System
- Conclusion & Future Direction
Conclusion

Automated Machine Learning contribute to improving the performance of deep recommender systems in a data-driven manner.

- Search embedding dimensions to better model feature representations
- Design deep networks to better capture feature interactions
- Design comprehensive system architectures to better improve performance

Automated Machine Learning

Conclusion

AutoML advantages:

- Different data \rightarrow different architectures
- Less expert knowledge
- Saving time and efforts

Applying to real applications

	Model	Feature Field	Search Space	Search Strategy
Single Embedding Search	AMTL	Categorical	d^V	Gradient
	PEP	Categorical	2^{Vd}	Regularization
	AutoEmb	Categorical	a ^V	Gradient
	ESPAN	Categorical	a ^V	Reinforcement Learning
Group Embedding Search	AutoDim	Categorical	a ^m	Gradient
	DNIS	Categorical	2 ^{bd}	Gradient
	NIS	Categorical	b ^a	Reinforcement Learning
-	AutoDis	Numerical	2 ^{km}	Gradient

* *d* is the embedding size, *V* is the vocabulary size, *m* is the number of feature fields, *a* is the number of sub-dimensions, *b* is the number of groups, *k* is the number of meta-embeddings. (a < d, b<<V)

- The search space of Group Embedding Search is less than Single Embedding Search.
- Limited approaches for embedding learning of numerical features.
- Gradient-based is more popular as it has higher efficiency.

Туре	Model	Search Space	Search Strategy
– , , , ,	AutoFIS	$2^{c_m^p}$	Gradient
Feature Interaction	AutoGroup	2 ^{<i>gm</i>}	Gradient
Couron	FIVES	2^{m^2}	Gradient
Interaction Function	SIF	b ^a	Gradient
Search	AutoFeature	$b^{C_m^p}$	Evolutionary
Interaction Block	AutoCTR	b ^a	Evolutionary
Search	AutoPI	b ^a	Gradient

* m is the number of feature fields, p is the order, g is the number of pre-defined groups, a is the number of pre-defined bolcks, b is the number of candidate interaction functions.

- The search space of Feature Interaction Search and Interaction Function Search are larger than Interaction Block Search.
- Gradient-based is more popular as it has higher efficiency.

Summarize Comprehensive Search & System 😵 💃

Туре	Model	Search Space	Search Strategy
Comprehensive Search	AMEIR	Sequential model, Feature interaction, MLP	One-shot Random Search
	AIM	Embedding Dimension, Intearaction Function, Feature Interaction	Gradient
	AutoIAS	Embedding Dimension, Projection Dimension, Interaction Function, Feature Interaction, MLP	Reinforcement Learning
	AutoLoss	Optimization: Loss Function	Gradient
System Design	AutoGSR	Structure Design: GNN Architecture	Gradient
System Design	AutoFT	Parameter Tuning: Fine-Tune or Not (For pre-trained models)	Gradient

- Comprehensive search: separately search
- System design: AutoML is widely appied.
- Gradient-based is more popular as it has higher efficiency.

1) Feature Embedding

- Combine the feature representation learning with model compression or quantization
- Multi-modality feature representation learning, such as text, pictures, audio, and video
- 2) Feature Interaction
- **Personalized** feature interactions search for different users
- Introduce **complex interaction operators** for generating more diverse interaction functions
- 3) Comprehensive system architectures
- Searches for multiple components (embedding, interaction and MLP) simultaneously

Future Directions

4) AutoML Algorithm

• Design AutoML algorithm (search and evaluation strategy) that is more in line with the recommendation scenario

5) Model Selection

• Search different sub-models/sub-architectures according to different requests adaptively

6) Muti-task learning

 Multi-task learning is one of the most important techniques in industry recommendation for considering different revenue targets (e.g., ctr, cvr, vv). Designing an automatic algorithm for recommendation based on muti-task learning

7) User Behavior Modeling

 User history behaviors contain different dimensions of interests. Automatically retrieve beneficial history behaviors for modeling user preference

Automated Machine Learning for Deep Recommender Systems: A Survey

https://arxiv.org/pdf/2204.01390

